{"title":"更高的等变和不变拓扑复杂性","authors":"Marzieh Bayeh, Soumen Sarkar","doi":"10.1007/s40062-020-00260-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper we introduce concepts of higher equivariant and invariant topological complexities and study their properties. Then we compare them with equivariant LS-category. We give lower and upper bounds for these new invariants. We compute some of these invariants for moment angle complexes.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00260-6","citationCount":"8","resultStr":"{\"title\":\"Higher equivariant and invariant topological complexities\",\"authors\":\"Marzieh Bayeh, Soumen Sarkar\",\"doi\":\"10.1007/s40062-020-00260-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we introduce concepts of higher equivariant and invariant topological complexities and study their properties. Then we compare them with equivariant LS-category. We give lower and upper bounds for these new invariants. We compute some of these invariants for moment angle complexes.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-020-00260-6\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-020-00260-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00260-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Higher equivariant and invariant topological complexities
In this paper we introduce concepts of higher equivariant and invariant topological complexities and study their properties. Then we compare them with equivariant LS-category. We give lower and upper bounds for these new invariants. We compute some of these invariants for moment angle complexes.