{"title":"新型钢板焊接工字钢与箱形柱连接方式的研究","authors":"Moussa Twizere, K. Taşkın","doi":"10.1002/tal.1940","DOIUrl":null,"url":null,"abstract":"Box steel columns have significant advantages compared with H‐columns. However, box steel columns have the detrimental tendency of developing a plastic hinge at the column panel zone due to stress concentration. One of the methods for moving the concentration of the stresses at the column panel zone is to use a reduced beam. Nevertheless, a reduced beam decreases the capacity of the beam. This paper proposes a solution to the plastic hinge location without reducing the capacity of the beam. In this study, 106 connection configurations were numerically investigated using ABAQUS software. Two relevant experimental studies were used to validate the modeling techniques. The proposed joint was classified as semi‐rigid and full strength according to Eurocode‐3. To predict the cyclic behavior of the proposed connection, analytical simulation was performed using a Matlab program that uses the Richard and Abbot function. The program was able to accurately reproduce the connection behavior. Through parametric studies, the influence of plate thickness, column, and beam geometry on the connection's initial stiffness and moment resistance was examined. Finally, by using regression analysis, linear functions capable of predicting the initial stiffness and moment resistance of the connection were proposed.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a novel I‐beam to box column connection with welded steel plates\",\"authors\":\"Moussa Twizere, K. Taşkın\",\"doi\":\"10.1002/tal.1940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Box steel columns have significant advantages compared with H‐columns. However, box steel columns have the detrimental tendency of developing a plastic hinge at the column panel zone due to stress concentration. One of the methods for moving the concentration of the stresses at the column panel zone is to use a reduced beam. Nevertheless, a reduced beam decreases the capacity of the beam. This paper proposes a solution to the plastic hinge location without reducing the capacity of the beam. In this study, 106 connection configurations were numerically investigated using ABAQUS software. Two relevant experimental studies were used to validate the modeling techniques. The proposed joint was classified as semi‐rigid and full strength according to Eurocode‐3. To predict the cyclic behavior of the proposed connection, analytical simulation was performed using a Matlab program that uses the Richard and Abbot function. The program was able to accurately reproduce the connection behavior. Through parametric studies, the influence of plate thickness, column, and beam geometry on the connection's initial stiffness and moment resistance was examined. Finally, by using regression analysis, linear functions capable of predicting the initial stiffness and moment resistance of the connection were proposed.\",\"PeriodicalId\":49470,\"journal\":{\"name\":\"Structural Design of Tall and Special Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.1940\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.1940","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Development of a novel I‐beam to box column connection with welded steel plates
Box steel columns have significant advantages compared with H‐columns. However, box steel columns have the detrimental tendency of developing a plastic hinge at the column panel zone due to stress concentration. One of the methods for moving the concentration of the stresses at the column panel zone is to use a reduced beam. Nevertheless, a reduced beam decreases the capacity of the beam. This paper proposes a solution to the plastic hinge location without reducing the capacity of the beam. In this study, 106 connection configurations were numerically investigated using ABAQUS software. Two relevant experimental studies were used to validate the modeling techniques. The proposed joint was classified as semi‐rigid and full strength according to Eurocode‐3. To predict the cyclic behavior of the proposed connection, analytical simulation was performed using a Matlab program that uses the Richard and Abbot function. The program was able to accurately reproduce the connection behavior. Through parametric studies, the influence of plate thickness, column, and beam geometry on the connection's initial stiffness and moment resistance was examined. Finally, by using regression analysis, linear functions capable of predicting the initial stiffness and moment resistance of the connection were proposed.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.