可再生科学的科学规模:pySciSci

IF 4.1 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
Alexander J. Gates, A. Barabási
{"title":"可再生科学的科学规模:pySciSci","authors":"Alexander J. Gates, A. Barabási","doi":"10.1162/qss_a_00260","DOIUrl":null,"url":null,"abstract":"\n Science of science (SciSci) is a growing field encompassing diverse interdisciplinary research programs that study the processes underlying science. The field has benefited greatly from access to massive digital databases containing the products of scientific discourse—including publications, journals, patents, books, conference proceedings, and grants. The subsequent proliferation of mathematical models and computational techniques for quantifying the dynamics of innovation and success in science has made it difficult to disentangle universal scientific processes from those dependent on specific databases, data-processing decisions, field practices, etc. Here we present pySciSci, a freely available and easily adaptable package for the analysis of large-scale bibliometric data. The pySciSci package standardizes access to many of the most common datasets in SciSci and provides efficient implementations of common and advanced analytical techniques.\n \n \n https://www.webofscience.com/api/gateway/wos/peer-review/10.1162/qss_a_00260\n","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reproducible Science of Science at scale: pySciSci\",\"authors\":\"Alexander J. Gates, A. Barabási\",\"doi\":\"10.1162/qss_a_00260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Science of science (SciSci) is a growing field encompassing diverse interdisciplinary research programs that study the processes underlying science. The field has benefited greatly from access to massive digital databases containing the products of scientific discourse—including publications, journals, patents, books, conference proceedings, and grants. The subsequent proliferation of mathematical models and computational techniques for quantifying the dynamics of innovation and success in science has made it difficult to disentangle universal scientific processes from those dependent on specific databases, data-processing decisions, field practices, etc. Here we present pySciSci, a freely available and easily adaptable package for the analysis of large-scale bibliometric data. The pySciSci package standardizes access to many of the most common datasets in SciSci and provides efficient implementations of common and advanced analytical techniques.\\n \\n \\n https://www.webofscience.com/api/gateway/wos/peer-review/10.1162/qss_a_00260\\n\",\"PeriodicalId\":34021,\"journal\":{\"name\":\"Quantitative Science Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Science Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/qss_a_00260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Science Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/qss_a_00260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 4

摘要

科学科学(SciSci)是一个不断发展的领域,包括研究科学过程的各种跨学科研究项目。该领域从访问包含科学话语产品的大规模数字数据库中受益匪浅,包括出版物、期刊、专利、书籍、会议记录和拨款。随后,用于量化科学创新和成功动态的数学模型和计算技术的激增,使得很难将通用科学过程与依赖于特定数据库、数据处理决策、现场实践等的科学过程区分开来,用于分析大规模文献计量学数据的免费且易于调整的软件包。pySciSci包标准化了对SciSci中许多最常见数据集的访问,并提供了通用和高级分析技术的有效实现。https://www.webofscience.com/api/gateway/wos/peer-review/10.1162/qss_a_00260
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reproducible Science of Science at scale: pySciSci
Science of science (SciSci) is a growing field encompassing diverse interdisciplinary research programs that study the processes underlying science. The field has benefited greatly from access to massive digital databases containing the products of scientific discourse—including publications, journals, patents, books, conference proceedings, and grants. The subsequent proliferation of mathematical models and computational techniques for quantifying the dynamics of innovation and success in science has made it difficult to disentangle universal scientific processes from those dependent on specific databases, data-processing decisions, field practices, etc. Here we present pySciSci, a freely available and easily adaptable package for the analysis of large-scale bibliometric data. The pySciSci package standardizes access to many of the most common datasets in SciSci and provides efficient implementations of common and advanced analytical techniques. https://www.webofscience.com/api/gateway/wos/peer-review/10.1162/qss_a_00260
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantitative Science Studies
Quantitative Science Studies INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
12.10
自引率
12.50%
发文量
46
审稿时长
22 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信