{"title":"关于$\\textbf{Q}\\phi=\\textbf{Q}的三维几乎Kenmotsu流形上Yamabe孤立子的一个注记$","authors":"G. Ghosh","doi":"10.36890/iejg.1239222","DOIUrl":null,"url":null,"abstract":"In the present paper, we prove that if the metric of a three dimensional almost Kenmotsu manifold with $\\textbf{Q}\\phi=\\phi \\textbf{Q}$ whose scalar curvature remains invariant under the chracterstic vector field $\\zeta$, admits a non-trivial Yamabe solitons, then the manifold is of constant sectional curvature or the manifold is Ricci simple.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Yamabe Solitons on 3-dimensional Almost Kenmotsu Manifolds with $\\\\textbf{Q}\\\\phi=\\\\phi \\\\textbf{Q}$\",\"authors\":\"G. Ghosh\",\"doi\":\"10.36890/iejg.1239222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we prove that if the metric of a three dimensional almost Kenmotsu manifold with $\\\\textbf{Q}\\\\phi=\\\\phi \\\\textbf{Q}$ whose scalar curvature remains invariant under the chracterstic vector field $\\\\zeta$, admits a non-trivial Yamabe solitons, then the manifold is of constant sectional curvature or the manifold is Ricci simple.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1239222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1239222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Note on Yamabe Solitons on 3-dimensional Almost Kenmotsu Manifolds with $\textbf{Q}\phi=\phi \textbf{Q}$
In the present paper, we prove that if the metric of a three dimensional almost Kenmotsu manifold with $\textbf{Q}\phi=\phi \textbf{Q}$ whose scalar curvature remains invariant under the chracterstic vector field $\zeta$, admits a non-trivial Yamabe solitons, then the manifold is of constant sectional curvature or the manifold is Ricci simple.