研究磁场对微通道系统中胶体流体流动的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
D. V. Litvinova, M. A. Tsoy, M. V. Kashkarova, A. Yu. Kravtsova
{"title":"研究磁场对微通道系统中胶体流体流动的影响","authors":"D. V. Litvinova,&nbsp;M. A. Tsoy,&nbsp;M. V. Kashkarova,&nbsp;A. Yu. Kravtsova","doi":"10.1134/S1810232823020145","DOIUrl":null,"url":null,"abstract":"<p>The motion of ferromagnetic liquid entering the distilled water stream in the channels of the tesla micromixer M-4 configuration with a characteristic size of 400 <span>\\(\\mu\\)</span>m was investigated in this paper. The interface between two liquids in a magnetic field and without it was considered. The source of the magnetic field was located on different sides relative to the feeding ferromagnetic liquid. It has been shown that when an object is located in a magnetic field, the solubility of the ferrofluid in the base liquid increases. A significant part of the ferroparticles of colloidal liquid in small channels is attracted to the source of the magnetic field (up to 80%), which allows reasonably assuming that the use of ferroparticles for the transportation of medicines is promising.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Influence of the Magnetic Field on the Flow of Colloidal Fluid in a Microchannel System\",\"authors\":\"D. V. Litvinova,&nbsp;M. A. Tsoy,&nbsp;M. V. Kashkarova,&nbsp;A. Yu. Kravtsova\",\"doi\":\"10.1134/S1810232823020145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The motion of ferromagnetic liquid entering the distilled water stream in the channels of the tesla micromixer M-4 configuration with a characteristic size of 400 <span>\\\\(\\\\mu\\\\)</span>m was investigated in this paper. The interface between two liquids in a magnetic field and without it was considered. The source of the magnetic field was located on different sides relative to the feeding ferromagnetic liquid. It has been shown that when an object is located in a magnetic field, the solubility of the ferrofluid in the base liquid increases. A significant part of the ferroparticles of colloidal liquid in small channels is attracted to the source of the magnetic field (up to 80%), which allows reasonably assuming that the use of ferroparticles for the transportation of medicines is promising.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232823020145\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232823020145","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了特征尺寸为400 \(\mu\) m的特斯拉m -4型微混合器通道中铁磁液体进入蒸馏水流的运动。考虑了两种液体在有磁场和没有磁场时的界面。磁场源相对于进料铁磁液体分布在不同的侧面。结果表明,当物体处于磁场中时,铁磁流体在基液中的溶解度增加。在小通道中,胶体液体中的铁粒子有很大一部分被磁场源吸引(高达80%), which allows reasonably assuming that the use of ferroparticles for the transportation of medicines is promising.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the Influence of the Magnetic Field on the Flow of Colloidal Fluid in a Microchannel System

Investigating the Influence of the Magnetic Field on the Flow of Colloidal Fluid in a Microchannel System

The motion of ferromagnetic liquid entering the distilled water stream in the channels of the tesla micromixer M-4 configuration with a characteristic size of 400 \(\mu\)m was investigated in this paper. The interface between two liquids in a magnetic field and without it was considered. The source of the magnetic field was located on different sides relative to the feeding ferromagnetic liquid. It has been shown that when an object is located in a magnetic field, the solubility of the ferrofluid in the base liquid increases. A significant part of the ferroparticles of colloidal liquid in small channels is attracted to the source of the magnetic field (up to 80%), which allows reasonably assuming that the use of ferroparticles for the transportation of medicines is promising.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信