二维欧拉方程涡斑解的存在性和规律性

IF 1.2 2区 数学 Q1 MATHEMATICS
Razvan-Octavian Radu
{"title":"二维欧拉方程涡斑解的存在性和规律性","authors":"Razvan-Octavian Radu","doi":"10.1512/iumj.2022.71.9091","DOIUrl":null,"url":null,"abstract":". In [3], Bertozzi and Constantin formulate the vortex patch problem in the level-set framework and prove a priori estimates for this active scalar equation. By extending the tools used to prove these estimates, we construct solutions and show propagation of higher H¨older regularity. This constitutes a proof of the regularity of vortex patches, carried out solely in the level-set framework.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Existence and regularity for vortex patch solutions of the 2D Euler equations\",\"authors\":\"Razvan-Octavian Radu\",\"doi\":\"10.1512/iumj.2022.71.9091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In [3], Bertozzi and Constantin formulate the vortex patch problem in the level-set framework and prove a priori estimates for this active scalar equation. By extending the tools used to prove these estimates, we construct solutions and show propagation of higher H¨older regularity. This constitutes a proof of the regularity of vortex patches, carried out solely in the level-set framework.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2022.71.9091\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9091","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

. 在[3]中,Bertozzi和Constantin在水平集框架中构造了涡旋斑块问题,并证明了该活动标量方程的先验估计。通过扩展用于证明这些估计的工具,我们构造了解并展示了更高H - old正则性的传播。这构成了旋涡斑块的规律性的证明,仅在水平集框架中进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and regularity for vortex patch solutions of the 2D Euler equations
. In [3], Bertozzi and Constantin formulate the vortex patch problem in the level-set framework and prove a priori estimates for this active scalar equation. By extending the tools used to prove these estimates, we construct solutions and show propagation of higher H¨older regularity. This constitutes a proof of the regularity of vortex patches, carried out solely in the level-set framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信