Rashid Ashraf, Rashid Nawaz, Osama Alabdali, Nicholas Fewster-Young, Ali Hasan Ali, Firas Ghanim, A. Alb Lupaș
{"title":"非线性分数阶偏微分方程近似解的一种新的混合最优辅助函数方法","authors":"Rashid Ashraf, Rashid Nawaz, Osama Alabdali, Nicholas Fewster-Young, Ali Hasan Ali, Firas Ghanim, A. Alb Lupaș","doi":"10.3390/fractalfract7090673","DOIUrl":null,"url":null,"abstract":"This study uses the optimal auxiliary function method to approximate solutions for fractional-order non-linear partial differential equations, utilizing Riemann–Liouville’s fractional integral and the Caputo derivative. This approach eliminates the need for assumptions about parameter magnitudes, offering a significant advantage. We validate our approach using the time-fractional Cahn–Hilliard, fractional Burgers–Poisson, and Benjamin–Bona–Mahony–Burger equations. Comparative testing shows that our method outperforms new iterative, homotopy perturbation, homotopy analysis, and residual power series methods. These examples highlight our method’s effectiveness in obtaining precise solutions for non-linear fractional differential equations, showcasing its superiority in accuracy and consistency. We underscore its potential for revealing elusive exact solutions by demonstrating success across various examples. Our methodology advances fractional differential equation research and equips practitioners with a tool for solving non-linear equations. A key feature is its ability to avoid parameter assumptions, enhancing its applicability to a broader range of problems and expanding the scope of problems addressable using fractional calculus techniques.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Hybrid Optimal Auxiliary Function Method for Approximate Solutions of Non-Linear Fractional Partial Differential Equations\",\"authors\":\"Rashid Ashraf, Rashid Nawaz, Osama Alabdali, Nicholas Fewster-Young, Ali Hasan Ali, Firas Ghanim, A. Alb Lupaș\",\"doi\":\"10.3390/fractalfract7090673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study uses the optimal auxiliary function method to approximate solutions for fractional-order non-linear partial differential equations, utilizing Riemann–Liouville’s fractional integral and the Caputo derivative. This approach eliminates the need for assumptions about parameter magnitudes, offering a significant advantage. We validate our approach using the time-fractional Cahn–Hilliard, fractional Burgers–Poisson, and Benjamin–Bona–Mahony–Burger equations. Comparative testing shows that our method outperforms new iterative, homotopy perturbation, homotopy analysis, and residual power series methods. These examples highlight our method’s effectiveness in obtaining precise solutions for non-linear fractional differential equations, showcasing its superiority in accuracy and consistency. We underscore its potential for revealing elusive exact solutions by demonstrating success across various examples. Our methodology advances fractional differential equation research and equips practitioners with a tool for solving non-linear equations. A key feature is its ability to avoid parameter assumptions, enhancing its applicability to a broader range of problems and expanding the scope of problems addressable using fractional calculus techniques.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7090673\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7090673","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A New Hybrid Optimal Auxiliary Function Method for Approximate Solutions of Non-Linear Fractional Partial Differential Equations
This study uses the optimal auxiliary function method to approximate solutions for fractional-order non-linear partial differential equations, utilizing Riemann–Liouville’s fractional integral and the Caputo derivative. This approach eliminates the need for assumptions about parameter magnitudes, offering a significant advantage. We validate our approach using the time-fractional Cahn–Hilliard, fractional Burgers–Poisson, and Benjamin–Bona–Mahony–Burger equations. Comparative testing shows that our method outperforms new iterative, homotopy perturbation, homotopy analysis, and residual power series methods. These examples highlight our method’s effectiveness in obtaining precise solutions for non-linear fractional differential equations, showcasing its superiority in accuracy and consistency. We underscore its potential for revealing elusive exact solutions by demonstrating success across various examples. Our methodology advances fractional differential equation research and equips practitioners with a tool for solving non-linear equations. A key feature is its ability to avoid parameter assumptions, enhancing its applicability to a broader range of problems and expanding the scope of problems addressable using fractional calculus techniques.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.