粘性介质中固体粒子动力学模拟的插值弹回热方法

IF 0.2 Q4 MATHEMATICS
D. Zhakebayev, A. Zhumali, B. Satenova
{"title":"粘性介质中固体粒子动力学模拟的插值弹回热方法","authors":"D. Zhakebayev, A. Zhumali, B. Satenova","doi":"10.26577/ijmph.2021.v12.i2.06","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the mathematical and computer modeling of non-isothermal two-phase flows with suspended particles. Natural convection between an outer cubical cavity and an inner hot sphere is investigated. To simulate heat fluxes loaded with particles, a thermal model of the lattice Boltzmann equation in combination with the interpolated bounce back method (TLBM-IBB) has been developed. In TLBM-IBB, IBB is used to process liquid-solid interfaces, and TLBM is used to simulate the heat flow of a fluid. The momentum exchange method is used to calculate the hydrodynamic force on the particle surface. Simulation performed for a range of Rayleigh numbers . The accuracy and efficiency of the existing method is demonstrated by the example of solving the test problem of natural convection around a stationary particle and three-dimensional compressible natural convection in a square cavity filled with air, which has a hot wall on the left and a cold wall on the right, and two horizontal walls are adiabatic. The results obtained are in good agreement with the experimental and numerical results of other authors.","PeriodicalId":40756,"journal":{"name":"International Journal of Mathematics and Physics","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Interpolated Bounce Back Thermable Method for Simulating Solid Particles Dynamics in a Viscous Medium\",\"authors\":\"D. Zhakebayev, A. Zhumali, B. Satenova\",\"doi\":\"10.26577/ijmph.2021.v12.i2.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the mathematical and computer modeling of non-isothermal two-phase flows with suspended particles. Natural convection between an outer cubical cavity and an inner hot sphere is investigated. To simulate heat fluxes loaded with particles, a thermal model of the lattice Boltzmann equation in combination with the interpolated bounce back method (TLBM-IBB) has been developed. In TLBM-IBB, IBB is used to process liquid-solid interfaces, and TLBM is used to simulate the heat flow of a fluid. The momentum exchange method is used to calculate the hydrodynamic force on the particle surface. Simulation performed for a range of Rayleigh numbers . The accuracy and efficiency of the existing method is demonstrated by the example of solving the test problem of natural convection around a stationary particle and three-dimensional compressible natural convection in a square cavity filled with air, which has a hot wall on the left and a cold wall on the right, and two horizontal walls are adiabatic. The results obtained are in good agreement with the experimental and numerical results of other authors.\",\"PeriodicalId\":40756,\"journal\":{\"name\":\"International Journal of Mathematics and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26577/ijmph.2021.v12.i2.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26577/ijmph.2021.v12.i2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了含悬浮颗粒的非等温两相流的数学和计算机建模。研究了外部立方体空腔和内部热球之间的自然对流。为了模拟粒子负载的热通量,结合插值反弹法(TLBM-IBB)建立了晶格玻尔兹曼方程的热模型。在TLBM-IBB中,IBB用于处理液固界面,TLBM用于模拟流体的热流。动量交换法用于计算颗粒表面的流体动力。对一系列瑞利数进行的模拟。通过求解静止粒子周围的自然对流和填充空气的方形空腔中的三维可压缩自然对流的测试问题的例子,证明了现有方法的准确性和有效性。方形空腔左有热壁,右有冷壁,两个水平壁是绝热的。所得结果与其他作者的实验和数值结果吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Interpolated Bounce Back Thermable Method for Simulating Solid Particles Dynamics in a Viscous Medium
In this paper we discuss the mathematical and computer modeling of non-isothermal two-phase flows with suspended particles. Natural convection between an outer cubical cavity and an inner hot sphere is investigated. To simulate heat fluxes loaded with particles, a thermal model of the lattice Boltzmann equation in combination with the interpolated bounce back method (TLBM-IBB) has been developed. In TLBM-IBB, IBB is used to process liquid-solid interfaces, and TLBM is used to simulate the heat flow of a fluid. The momentum exchange method is used to calculate the hydrodynamic force on the particle surface. Simulation performed for a range of Rayleigh numbers . The accuracy and efficiency of the existing method is demonstrated by the example of solving the test problem of natural convection around a stationary particle and three-dimensional compressible natural convection in a square cavity filled with air, which has a hot wall on the left and a cold wall on the right, and two horizontal walls are adiabatic. The results obtained are in good agreement with the experimental and numerical results of other authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信