{"title":"有限生成群空间子集的描述复杂度","authors":"Mustafa Gökhan Benli̇, Burak Kaya","doi":"10.1016/j.exmath.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we determine the descriptive complexity of subsets of the Polish space of marked groups defined by various group theoretic properties. In particular, using Grigorchuk groups, we establish that the sets of solvable groups, groups of exponential growth and groups with decidable word problem are </span><span><math><msubsup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>-complete and that the sets of periodic groups and groups of intermediate growth are <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span><span>-complete. We also provide bounds for the descriptive complexity of simplicity, amenability, residually finiteness, Hopficity and co-Hopficity. This paper is intended to serve as a compilation of results on this theme.</span></p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Descriptive complexity of subsets of the space of finitely generated groups\",\"authors\":\"Mustafa Gökhan Benli̇, Burak Kaya\",\"doi\":\"10.1016/j.exmath.2022.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we determine the descriptive complexity of subsets of the Polish space of marked groups defined by various group theoretic properties. In particular, using Grigorchuk groups, we establish that the sets of solvable groups, groups of exponential growth and groups with decidable word problem are </span><span><math><msubsup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>-complete and that the sets of periodic groups and groups of intermediate growth are <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span><span>-complete. We also provide bounds for the descriptive complexity of simplicity, amenability, residually finiteness, Hopficity and co-Hopficity. This paper is intended to serve as a compilation of results on this theme.</span></p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086922000494\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086922000494","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Descriptive complexity of subsets of the space of finitely generated groups
In this paper, we determine the descriptive complexity of subsets of the Polish space of marked groups defined by various group theoretic properties. In particular, using Grigorchuk groups, we establish that the sets of solvable groups, groups of exponential growth and groups with decidable word problem are -complete and that the sets of periodic groups and groups of intermediate growth are -complete. We also provide bounds for the descriptive complexity of simplicity, amenability, residually finiteness, Hopficity and co-Hopficity. This paper is intended to serve as a compilation of results on this theme.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.