量子高斯阱的近似能谱:一个四参数势拟合

IF 0.5 Q4 PHYSICS, MULTIDISCIPLINARY
{"title":"量子高斯阱的近似能谱:一个四参数势拟合","authors":"","doi":"10.47011/15.5.6","DOIUrl":null,"url":null,"abstract":"Abstract: In this work, we present a detailed study of a one-dimensional Schrödinger equation in the presence of quantum Gaussian well interaction. Further, we investigate the approximate solutions by using the harmonic oscillator approximation, variational principle, four-parameter potential fitting and numerical solution using the finite-difference method. The parabolic approximation yields an excellent energy value compared with the numerical solution of the Gaussian system only for the ground state, while for the excited states, it provides a higher approximation. Also, the analytical bound-state energies of the four-parameter potential under the framework of the Nikiforov-Uvarov (NU) method have been used after getting the suitable values of the potential parameters using numerical fitting. The present results of the system states are found to be in high agreement with the well-known numerical results of the Gaussian potential.\nKeywords: Gaussian potential, One-dimensional Schrödinger equation, Nikiforov- Uvarov (NU) method, Four-parameter potential.\nPACS: 03.65.−w; 02.90.+p; 12.39.Pn.","PeriodicalId":42562,"journal":{"name":"Jordan Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximate Energy Spectra of the Quantum Gaussian Well: A Four-parameter Potential Fitting\",\"authors\":\"\",\"doi\":\"10.47011/15.5.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: In this work, we present a detailed study of a one-dimensional Schrödinger equation in the presence of quantum Gaussian well interaction. Further, we investigate the approximate solutions by using the harmonic oscillator approximation, variational principle, four-parameter potential fitting and numerical solution using the finite-difference method. The parabolic approximation yields an excellent energy value compared with the numerical solution of the Gaussian system only for the ground state, while for the excited states, it provides a higher approximation. Also, the analytical bound-state energies of the four-parameter potential under the framework of the Nikiforov-Uvarov (NU) method have been used after getting the suitable values of the potential parameters using numerical fitting. The present results of the system states are found to be in high agreement with the well-known numerical results of the Gaussian potential.\\nKeywords: Gaussian potential, One-dimensional Schrödinger equation, Nikiforov- Uvarov (NU) method, Four-parameter potential.\\nPACS: 03.65.−w; 02.90.+p; 12.39.Pn.\",\"PeriodicalId\":42562,\"journal\":{\"name\":\"Jordan Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47011/15.5.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47011/15.5.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要:在这项工作中,我们详细研究了存在量子高斯阱相互作用的一维薛定谔方程。此外,我们还利用谐振子近似、变分原理、四参数势拟合和有限差分法的数值解研究了近似解。与仅对基态的高斯系统的数值解相比,抛物线近似产生了极好的能量值,而对于激发态,它提供了更高的近似。此外,在通过数值拟合得到合适的势参数值后,在Nikiforov-Uvarov(NU)方法的框架下,使用了四参数势的解析束缚态能。系统状态的当前结果与众所周知的高斯势的数值结果高度一致。关键词:高斯势,一维薛定谔方程,Nikiforov-Uvarov(NU)方法,四参数势。PACS:03.65.−w;02.90.+p;12.39.第页。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Energy Spectra of the Quantum Gaussian Well: A Four-parameter Potential Fitting
Abstract: In this work, we present a detailed study of a one-dimensional Schrödinger equation in the presence of quantum Gaussian well interaction. Further, we investigate the approximate solutions by using the harmonic oscillator approximation, variational principle, four-parameter potential fitting and numerical solution using the finite-difference method. The parabolic approximation yields an excellent energy value compared with the numerical solution of the Gaussian system only for the ground state, while for the excited states, it provides a higher approximation. Also, the analytical bound-state energies of the four-parameter potential under the framework of the Nikiforov-Uvarov (NU) method have been used after getting the suitable values of the potential parameters using numerical fitting. The present results of the system states are found to be in high agreement with the well-known numerical results of the Gaussian potential. Keywords: Gaussian potential, One-dimensional Schrödinger equation, Nikiforov- Uvarov (NU) method, Four-parameter potential. PACS: 03.65.−w; 02.90.+p; 12.39.Pn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jordan Journal of Physics
Jordan Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.90
自引率
14.30%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信