{"title":"用于双频带应用的垂直波导到微带的自偶极跃迁","authors":"E. Arnieri, F. Greco, L. Boccia, G. Amendola","doi":"10.1109/LMWC.2022.3193166","DOIUrl":null,"url":null,"abstract":"This letter presents a novel vertical waveguide-to-microstrip self-diplexing transition for dual-band applications. The transition is realized with standard printed circuit board (PCB) manufacturing processing, making it suitable for mass production and practical applications. A standard waveguide is screwed on the topside of the stack-up. Dual-band self-diplexing operation is achieved by coupling two microstrips (one for each band) to two radiating patches through H-shaped slots. The operating bandwidth has been enhanced by adding two parasitic patches above the radiating ones. Metalized via holes are used to form a cage around the rectangular waveguide and the microstrips to prevent power leakage. A prototype has been fabricated to operate at K/Ka frequency band. The experimental results show a −10 dB matching bandwidth of 20% and 14% for the lower and upper bands, respectively. Within these ranges, the maximum measured insertion loss is about 0.6 and 0.7 dB, respectively.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1407-1410"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vertical Waveguide-to-Microstrip Self-Diplexing Transition for Dual-Band Applications\",\"authors\":\"E. Arnieri, F. Greco, L. Boccia, G. Amendola\",\"doi\":\"10.1109/LMWC.2022.3193166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a novel vertical waveguide-to-microstrip self-diplexing transition for dual-band applications. The transition is realized with standard printed circuit board (PCB) manufacturing processing, making it suitable for mass production and practical applications. A standard waveguide is screwed on the topside of the stack-up. Dual-band self-diplexing operation is achieved by coupling two microstrips (one for each band) to two radiating patches through H-shaped slots. The operating bandwidth has been enhanced by adding two parasitic patches above the radiating ones. Metalized via holes are used to form a cage around the rectangular waveguide and the microstrips to prevent power leakage. A prototype has been fabricated to operate at K/Ka frequency band. The experimental results show a −10 dB matching bandwidth of 20% and 14% for the lower and upper bands, respectively. Within these ranges, the maximum measured insertion loss is about 0.6 and 0.7 dB, respectively.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1407-1410\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3193166\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3193166","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Vertical Waveguide-to-Microstrip Self-Diplexing Transition for Dual-Band Applications
This letter presents a novel vertical waveguide-to-microstrip self-diplexing transition for dual-band applications. The transition is realized with standard printed circuit board (PCB) manufacturing processing, making it suitable for mass production and practical applications. A standard waveguide is screwed on the topside of the stack-up. Dual-band self-diplexing operation is achieved by coupling two microstrips (one for each band) to two radiating patches through H-shaped slots. The operating bandwidth has been enhanced by adding two parasitic patches above the radiating ones. Metalized via holes are used to form a cage around the rectangular waveguide and the microstrips to prevent power leakage. A prototype has been fabricated to operate at K/Ka frequency band. The experimental results show a −10 dB matching bandwidth of 20% and 14% for the lower and upper bands, respectively. Within these ranges, the maximum measured insertion loss is about 0.6 and 0.7 dB, respectively.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.