Jiulia Tereza Marques de Castro, Rafael Barreto, E. C. Alvarenga, R. A. Costa
{"title":"单纯胶原蛋白支架与聚合物相关胶原蛋白和纳米材料在皮肤伤口修复中的效果比较","authors":"Jiulia Tereza Marques de Castro, Rafael Barreto, E. C. Alvarenga, R. A. Costa","doi":"10.14393/bj-v39n0a2023-67617","DOIUrl":null,"url":null,"abstract":"Wound healing remains a clinical problem, with cases of atrophic, hypertrophic, or keloid scars. Three-dimensional scaffolds have been used to restore skin function, facilitating cell migration, adhesion, and proliferation. Collagen is the most common, presenting low antigenicity, decreased inflammation, and replacement by autologous tissue. It is used as sheets/films, sponges, membranes, sprays, and hydrogels of various origins. This integrative literature review aimed to evaluate the application of unassociated collagen scaffolds for skin wound healing and compare them to collagen associations with nanomaterials and polymers. Properties such as applications in humans and other unconventional models cause burns, partial and full-thickness wounds, and others. Scaffold, biomaterials, collagen, wound, injury, repair, and healing were among the descriptors. We found 3,098 articles published between 1995 and 2022 (Mendeley platform), including clinical/experimental trials. After exclusion, 26 studies were identified and analyzed. Autologous and heterologous collagens are the most used in the clinic and favor wound closure by improving re-epithelialization and reducing inflammation but may present challenges in aesthetic acceptance and loss of repair function in the wound site. Furthermore, collagen integration with other nanomaterials improved wound repair and experimental models.","PeriodicalId":8951,"journal":{"name":"Bioscience Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficacy of collagen-only scaffolds compared to polymer-associated collagen and nanomaterials in skin wound repair – a review\",\"authors\":\"Jiulia Tereza Marques de Castro, Rafael Barreto, E. C. Alvarenga, R. A. Costa\",\"doi\":\"10.14393/bj-v39n0a2023-67617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wound healing remains a clinical problem, with cases of atrophic, hypertrophic, or keloid scars. Three-dimensional scaffolds have been used to restore skin function, facilitating cell migration, adhesion, and proliferation. Collagen is the most common, presenting low antigenicity, decreased inflammation, and replacement by autologous tissue. It is used as sheets/films, sponges, membranes, sprays, and hydrogels of various origins. This integrative literature review aimed to evaluate the application of unassociated collagen scaffolds for skin wound healing and compare them to collagen associations with nanomaterials and polymers. Properties such as applications in humans and other unconventional models cause burns, partial and full-thickness wounds, and others. Scaffold, biomaterials, collagen, wound, injury, repair, and healing were among the descriptors. We found 3,098 articles published between 1995 and 2022 (Mendeley platform), including clinical/experimental trials. After exclusion, 26 studies were identified and analyzed. Autologous and heterologous collagens are the most used in the clinic and favor wound closure by improving re-epithelialization and reducing inflammation but may present challenges in aesthetic acceptance and loss of repair function in the wound site. Furthermore, collagen integration with other nanomaterials improved wound repair and experimental models.\",\"PeriodicalId\":8951,\"journal\":{\"name\":\"Bioscience Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.14393/bj-v39n0a2023-67617\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.14393/bj-v39n0a2023-67617","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficacy of collagen-only scaffolds compared to polymer-associated collagen and nanomaterials in skin wound repair – a review
Wound healing remains a clinical problem, with cases of atrophic, hypertrophic, or keloid scars. Three-dimensional scaffolds have been used to restore skin function, facilitating cell migration, adhesion, and proliferation. Collagen is the most common, presenting low antigenicity, decreased inflammation, and replacement by autologous tissue. It is used as sheets/films, sponges, membranes, sprays, and hydrogels of various origins. This integrative literature review aimed to evaluate the application of unassociated collagen scaffolds for skin wound healing and compare them to collagen associations with nanomaterials and polymers. Properties such as applications in humans and other unconventional models cause burns, partial and full-thickness wounds, and others. Scaffold, biomaterials, collagen, wound, injury, repair, and healing were among the descriptors. We found 3,098 articles published between 1995 and 2022 (Mendeley platform), including clinical/experimental trials. After exclusion, 26 studies were identified and analyzed. Autologous and heterologous collagens are the most used in the clinic and favor wound closure by improving re-epithelialization and reducing inflammation but may present challenges in aesthetic acceptance and loss of repair function in the wound site. Furthermore, collagen integration with other nanomaterials improved wound repair and experimental models.
Bioscience JournalAgricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
1.00
自引率
0.00%
发文量
90
审稿时长
48 weeks
期刊介绍:
The Bioscience Journal is an interdisciplinary electronic journal that publishes scientific articles in the areas of Agricultural Sciences, Biological Sciences and Health Sciences. Its mission is to disseminate new knowledge while contributing to the development of science in the country and in the world. The journal is published in a continuous flow, in English. The opinions and concepts expressed in the published articles are the sole responsibility of their authors.