{"title":"环形高速试验台悬挑串联定子","authors":"Roland Rückert, D. Peitsch","doi":"10.3390/ijtpp7030024","DOIUrl":null,"url":null,"abstract":"The present paper investigates the aerodynamic performance of a cantilevered tandem stator based on experiments conducted within a high speed annular test rig at the Technische Universitaet Berlin. A tandem blade in this context describes a double rowed stator configuration where the turning of the incoming flow is split up between two blades arranged in succession. For evaluation purposes, a conventional single bladed stator is used as reference. To provide machine relevant boundary conditions of cantilevered stator assemblies, the moving hub wall is recreated by a rotating disk. Overall, the tandem stator is able to achieve higher flow turning while keeping the total pressure losses below those of a single stator. It is found that the tandem stator in general behaves similar to the conventional stator. When installed in cantilevered fashion, both stator types benefit considerably in terms of loss reduction. Without the hub clearance and therefore absence of the clearance flow, each of the configurations suffered from severe corner separation. The tandem stator responds more sensitively to change in clearance height.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cantilevered Tandem Stator in Annular High Speed Test Rig\",\"authors\":\"Roland Rückert, D. Peitsch\",\"doi\":\"10.3390/ijtpp7030024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper investigates the aerodynamic performance of a cantilevered tandem stator based on experiments conducted within a high speed annular test rig at the Technische Universitaet Berlin. A tandem blade in this context describes a double rowed stator configuration where the turning of the incoming flow is split up between two blades arranged in succession. For evaluation purposes, a conventional single bladed stator is used as reference. To provide machine relevant boundary conditions of cantilevered stator assemblies, the moving hub wall is recreated by a rotating disk. Overall, the tandem stator is able to achieve higher flow turning while keeping the total pressure losses below those of a single stator. It is found that the tandem stator in general behaves similar to the conventional stator. When installed in cantilevered fashion, both stator types benefit considerably in terms of loss reduction. Without the hub clearance and therefore absence of the clearance flow, each of the configurations suffered from severe corner separation. The tandem stator responds more sensitively to change in clearance height.\",\"PeriodicalId\":36626,\"journal\":{\"name\":\"International Journal of Turbomachinery, Propulsion and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbomachinery, Propulsion and Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijtpp7030024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp7030024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Cantilevered Tandem Stator in Annular High Speed Test Rig
The present paper investigates the aerodynamic performance of a cantilevered tandem stator based on experiments conducted within a high speed annular test rig at the Technische Universitaet Berlin. A tandem blade in this context describes a double rowed stator configuration where the turning of the incoming flow is split up between two blades arranged in succession. For evaluation purposes, a conventional single bladed stator is used as reference. To provide machine relevant boundary conditions of cantilevered stator assemblies, the moving hub wall is recreated by a rotating disk. Overall, the tandem stator is able to achieve higher flow turning while keeping the total pressure losses below those of a single stator. It is found that the tandem stator in general behaves similar to the conventional stator. When installed in cantilevered fashion, both stator types benefit considerably in terms of loss reduction. Without the hub clearance and therefore absence of the clearance flow, each of the configurations suffered from severe corner separation. The tandem stator responds more sensitively to change in clearance height.