J. Kaduk, A. Gindhart, S. Gates-Rector, T. Blanton
{"title":"塞来昔布C17H14F3N3O3S的晶体结构","authors":"J. Kaduk, A. Gindhart, S. Gates-Rector, T. Blanton","doi":"10.1017/S0885715622000525","DOIUrl":null,"url":null,"abstract":"The crystal structure of deracoxib has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Deracoxib crystallizes in space group Pbca (#61) with a = 9.68338(11), b = 9.50690(5), c = 38.2934(4) Å, V = 3525.25(3) Å3, and Z = 8. The molecules stack in layers parallel to the ab-plane. N–H⋯O hydrogen bonds link the molecules along the b-axis, in chains with the graph set C1,1(4), as well as more-complex patterns. N–H⋯N hydrogen bonds link the layers. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"38 1","pages":"64 - 68"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structure of deracoxib, C17H14F3N3O3S\",\"authors\":\"J. Kaduk, A. Gindhart, S. Gates-Rector, T. Blanton\",\"doi\":\"10.1017/S0885715622000525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystal structure of deracoxib has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Deracoxib crystallizes in space group Pbca (#61) with a = 9.68338(11), b = 9.50690(5), c = 38.2934(4) Å, V = 3525.25(3) Å3, and Z = 8. The molecules stack in layers parallel to the ab-plane. N–H⋯O hydrogen bonds link the molecules along the b-axis, in chains with the graph set C1,1(4), as well as more-complex patterns. N–H⋯N hydrogen bonds link the layers. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).\",\"PeriodicalId\":20333,\"journal\":{\"name\":\"Powder Diffraction\",\"volume\":\"38 1\",\"pages\":\"64 - 68\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Diffraction\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1017/S0885715622000525\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Diffraction","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1017/S0885715622000525","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
The crystal structure of deracoxib has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Deracoxib crystallizes in space group Pbca (#61) with a = 9.68338(11), b = 9.50690(5), c = 38.2934(4) Å, V = 3525.25(3) Å3, and Z = 8. The molecules stack in layers parallel to the ab-plane. N–H⋯O hydrogen bonds link the molecules along the b-axis, in chains with the graph set C1,1(4), as well as more-complex patterns. N–H⋯N hydrogen bonds link the layers. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
期刊介绍:
Powder Diffraction is a quarterly journal publishing articles, both experimental and theoretical, on the use of powder diffraction and related techniques for the characterization of crystalline materials. It is published by Cambridge University Press (CUP) for the International Centre for Diffraction Data (ICDD).