{"title":"某些混合特殊矩阵多项式的微分方程","authors":"Tabinda Nahid, Subuhi Khan","doi":"10.5269/bspm.52758","DOIUrl":null,"url":null,"abstract":"The main aim of this article is to find the matrix recurrence relation and shift operators for the Gould-Hopper-Laguerre-Appell matrix polynomials. The matrix differential, matrix integro-differential and matrix partial differential equations are derived for these polynomials via factorization method. Certain examples are constructed in order to illustrate the applications of the results.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Differential equations for certain hybrid special matrix polynomials\",\"authors\":\"Tabinda Nahid, Subuhi Khan\",\"doi\":\"10.5269/bspm.52758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this article is to find the matrix recurrence relation and shift operators for the Gould-Hopper-Laguerre-Appell matrix polynomials. The matrix differential, matrix integro-differential and matrix partial differential equations are derived for these polynomials via factorization method. Certain examples are constructed in order to illustrate the applications of the results.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.52758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Differential equations for certain hybrid special matrix polynomials
The main aim of this article is to find the matrix recurrence relation and shift operators for the Gould-Hopper-Laguerre-Appell matrix polynomials. The matrix differential, matrix integro-differential and matrix partial differential equations are derived for these polynomials via factorization method. Certain examples are constructed in order to illustrate the applications of the results.