某些混合特殊矩阵多项式的微分方程

IF 0.4 Q4 MATHEMATICS
Tabinda Nahid, Subuhi Khan
{"title":"某些混合特殊矩阵多项式的微分方程","authors":"Tabinda Nahid, Subuhi Khan","doi":"10.5269/bspm.52758","DOIUrl":null,"url":null,"abstract":"The main aim of this article is to find the matrix recurrence relation and shift operators for the Gould-Hopper-Laguerre-Appell matrix polynomials. The matrix differential, matrix integro-differential and matrix partial differential equations are derived for these polynomials via factorization method. Certain examples are constructed in order to illustrate the applications of the results.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Differential equations for certain hybrid special matrix polynomials\",\"authors\":\"Tabinda Nahid, Subuhi Khan\",\"doi\":\"10.5269/bspm.52758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this article is to find the matrix recurrence relation and shift operators for the Gould-Hopper-Laguerre-Appell matrix polynomials. The matrix differential, matrix integro-differential and matrix partial differential equations are derived for these polynomials via factorization method. Certain examples are constructed in order to illustrate the applications of the results.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.52758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文的主要目的是找到Gould-Hooper-Laguerre-Apell矩阵多项式的矩阵递推关系和移位算子。利用因子分解法导出了这些多项式的矩阵微分方程、矩阵积分微分方程和矩阵偏微分方程。为了说明结果的应用,构造了一些实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential equations for certain hybrid special matrix polynomials
The main aim of this article is to find the matrix recurrence relation and shift operators for the Gould-Hopper-Laguerre-Appell matrix polynomials. The matrix differential, matrix integro-differential and matrix partial differential equations are derived for these polynomials via factorization method. Certain examples are constructed in order to illustrate the applications of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信