重力调制对微极流体MHD自由对流流动的影响

IF 1.2 Q3 ENGINEERING, MARINE
S. Sengupta, R. Deb
{"title":"重力调制对微极流体MHD自由对流流动的影响","authors":"S. Sengupta, R. Deb","doi":"10.3329/JNAME.V17I2.41742","DOIUrl":null,"url":null,"abstract":"Department of Mathematics, Assam University, Silchar, Assam, India, E-mail: sanjib_aus2009@rediffmail.com; Department of Mathematics, Assam University, Silchar, Assam, India, ,E-mail: reshmideb27@gmail.com Abstract In this paper, a theoretical study is carried out on unsteady three dimensional, laminar, free convection flow of micropolar fluid with Hall effect, Joule heating and heat sink under gravitation modulation. A uniform transverse magnetic field is applied normal to the plate along the fluid region. The magnetic Reynolds number is considered to be small due to incomparability of applied and induced magnetic fields, as such the influence of induced magnetic field can be neglected. The multi parameter perturbation technique is used to solve the governed dimensionless equations. The fluid velocity, temperature and the concentration profiles are discussed with the aid of graphs and tables. The coefficient of skin friction and couple stresses is numerically computed in addition to Nusselt number and Sherwood number. The result reveals that the linear velocity increases due to escalation in gravitation modulation parameter values but for intensification in values of gravitation modulation parameter, a reverse effect is observed for rotational velocity. A comparative analysis shows that skin friction coefficient is less in micropolar fluid than the corresponding Newtonian fluid.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"17 1","pages":"199-218"},"PeriodicalIF":1.2000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitation modulation impact on MHD free convection flow of micropolar fluid\",\"authors\":\"S. Sengupta, R. Deb\",\"doi\":\"10.3329/JNAME.V17I2.41742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Department of Mathematics, Assam University, Silchar, Assam, India, E-mail: sanjib_aus2009@rediffmail.com; Department of Mathematics, Assam University, Silchar, Assam, India, ,E-mail: reshmideb27@gmail.com Abstract In this paper, a theoretical study is carried out on unsteady three dimensional, laminar, free convection flow of micropolar fluid with Hall effect, Joule heating and heat sink under gravitation modulation. A uniform transverse magnetic field is applied normal to the plate along the fluid region. The magnetic Reynolds number is considered to be small due to incomparability of applied and induced magnetic fields, as such the influence of induced magnetic field can be neglected. The multi parameter perturbation technique is used to solve the governed dimensionless equations. The fluid velocity, temperature and the concentration profiles are discussed with the aid of graphs and tables. The coefficient of skin friction and couple stresses is numerically computed in addition to Nusselt number and Sherwood number. The result reveals that the linear velocity increases due to escalation in gravitation modulation parameter values but for intensification in values of gravitation modulation parameter, a reverse effect is observed for rotational velocity. A comparative analysis shows that skin friction coefficient is less in micropolar fluid than the corresponding Newtonian fluid.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\"17 1\",\"pages\":\"199-218\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V17I2.41742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V17I2.41742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

阿萨姆邦大学数学系,印度阿萨姆邦西尔查尔,E-mail: sanjib_aus2009@rediffmail.com;摘要本文对重力调制下具有霍尔效应、焦耳加热和热沉降的微极流体的非定常三维、层流、自由对流流动进行了理论研究。均匀的横向磁场沿流体区域垂直于平板。由于外加磁场和感应磁场的不可比性,认为磁雷诺数很小,可以忽略感应磁场的影响。采用多参数摄动技术求解控制无量纲方程。用图形和表格讨论了流体的速度、温度和浓度分布。除努塞尔数和舍伍德数外,还对表面摩擦系数和耦合应力进行了数值计算。结果表明,随着重力调制参数值的增大,线速度增大,而随着重力调制参数值的增大,旋转速度则相反。对比分析表明,微极流体的表面摩擦系数小于相应的牛顿流体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gravitation modulation impact on MHD free convection flow of micropolar fluid
Department of Mathematics, Assam University, Silchar, Assam, India, E-mail: sanjib_aus2009@rediffmail.com; Department of Mathematics, Assam University, Silchar, Assam, India, ,E-mail: reshmideb27@gmail.com Abstract In this paper, a theoretical study is carried out on unsteady three dimensional, laminar, free convection flow of micropolar fluid with Hall effect, Joule heating and heat sink under gravitation modulation. A uniform transverse magnetic field is applied normal to the plate along the fluid region. The magnetic Reynolds number is considered to be small due to incomparability of applied and induced magnetic fields, as such the influence of induced magnetic field can be neglected. The multi parameter perturbation technique is used to solve the governed dimensionless equations. The fluid velocity, temperature and the concentration profiles are discussed with the aid of graphs and tables. The coefficient of skin friction and couple stresses is numerically computed in addition to Nusselt number and Sherwood number. The result reveals that the linear velocity increases due to escalation in gravitation modulation parameter values but for intensification in values of gravitation modulation parameter, a reverse effect is observed for rotational velocity. A comparative analysis shows that skin friction coefficient is less in micropolar fluid than the corresponding Newtonian fluid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
5.60%
发文量
0
审稿时长
20 weeks
期刊介绍: TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信