太阳能电池板50Wp功率功率比平面反光镜位置

Arif Sumardiono, Fadhillah Hazrina, Arief Syaefulloh
{"title":"太阳能电池板50Wp功率功率比平面反光镜位置","authors":"Arif Sumardiono, Fadhillah Hazrina, Arief Syaefulloh","doi":"10.35970/infotekmesin.v14i2.1913","DOIUrl":null,"url":null,"abstract":"Solar panel systems are widely used to meet energy needs at this time. Solar panels have optimal power for 4 hours, namely 10:00 to 14:00. but this is still said to be not optimal if the angle of the static solar panels does not follow the movement of the sun. This can also be caused by weather factors that are covered in clouds. Previous research conducted by Tri Wahyu Ardianto used mirror reflectors but was not equipped with sensors and data storage. Based on this, to optimize solar panel energy, a flat mirror reflector design for solar panels has been made, equipped with four flat mirror reflectors on each side to form a large square. The solar panel is placed in the middle between the four flat mirrors. In this study, the measurement of electric power was carried out by carrying 3 variable angles for reflector positions, namely 0°, 60°, and 70°. The decision of the three reflector positions is made to find out the ratio of the maximum output power values. This system is also equipped with current, voltage, and light intensity sensors. The results show that the maximum output power of solar panels is shown at the reflector position of 60° with an average power output of 19.70 Watt followed by a reflector position of 70° with an average output power of 19.18 Watt and finally the reflector position is 0° with an average output power value of 14.87 Watt.","PeriodicalId":33598,"journal":{"name":"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perbandingan Nilai Daya Luaran Panel Surya Kapasitas 50Wp Terhadap Posisi Reflektor Cermin Datar\",\"authors\":\"Arif Sumardiono, Fadhillah Hazrina, Arief Syaefulloh\",\"doi\":\"10.35970/infotekmesin.v14i2.1913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar panel systems are widely used to meet energy needs at this time. Solar panels have optimal power for 4 hours, namely 10:00 to 14:00. but this is still said to be not optimal if the angle of the static solar panels does not follow the movement of the sun. This can also be caused by weather factors that are covered in clouds. Previous research conducted by Tri Wahyu Ardianto used mirror reflectors but was not equipped with sensors and data storage. Based on this, to optimize solar panel energy, a flat mirror reflector design for solar panels has been made, equipped with four flat mirror reflectors on each side to form a large square. The solar panel is placed in the middle between the four flat mirrors. In this study, the measurement of electric power was carried out by carrying 3 variable angles for reflector positions, namely 0°, 60°, and 70°. The decision of the three reflector positions is made to find out the ratio of the maximum output power values. This system is also equipped with current, voltage, and light intensity sensors. The results show that the maximum output power of solar panels is shown at the reflector position of 60° with an average power output of 19.70 Watt followed by a reflector position of 70° with an average output power of 19.18 Watt and finally the reflector position is 0° with an average output power value of 14.87 Watt.\",\"PeriodicalId\":33598,\"journal\":{\"name\":\"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35970/infotekmesin.v14i2.1913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35970/infotekmesin.v14i2.1913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳能电池板系统被广泛用于满足此时的能源需求。太阳能电池板的最佳功率为4小时,即10:00至14:00。但如果静态太阳能电池板的角度不跟随太阳的运动,这仍然被认为不是最佳的。这也可能是由云层覆盖的天气因素造成的。Tri-Wahyu Ardianto之前进行的研究使用了反光镜,但没有配备传感器和数据存储。基于此,为了优化太阳能电池板的能量,对太阳能电池板进行了平面反射镜设计,每侧配备四个平面反射镜,形成一个大正方形。太阳能电池板被放置在四个平面反射镜之间的中间。在本研究中,通过对反射器位置进行3个可变角度的测量,即0°、60°和70°。决定三个反射器位置是为了找出最大输出功率值的比值。该系统还配备了电流、电压和光强传感器。结果表明,太阳能电池板的最大输出功率显示在60°的反射器位置,平均功率输出为19.70瓦,然后是70°的反射器,平均输出功率为19.18瓦,最后反射器位置为0°,平均输出功率值为14.87瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perbandingan Nilai Daya Luaran Panel Surya Kapasitas 50Wp Terhadap Posisi Reflektor Cermin Datar
Solar panel systems are widely used to meet energy needs at this time. Solar panels have optimal power for 4 hours, namely 10:00 to 14:00. but this is still said to be not optimal if the angle of the static solar panels does not follow the movement of the sun. This can also be caused by weather factors that are covered in clouds. Previous research conducted by Tri Wahyu Ardianto used mirror reflectors but was not equipped with sensors and data storage. Based on this, to optimize solar panel energy, a flat mirror reflector design for solar panels has been made, equipped with four flat mirror reflectors on each side to form a large square. The solar panel is placed in the middle between the four flat mirrors. In this study, the measurement of electric power was carried out by carrying 3 variable angles for reflector positions, namely 0°, 60°, and 70°. The decision of the three reflector positions is made to find out the ratio of the maximum output power values. This system is also equipped with current, voltage, and light intensity sensors. The results show that the maximum output power of solar panels is shown at the reflector position of 60° with an average power output of 19.70 Watt followed by a reflector position of 70° with an average output power of 19.18 Watt and finally the reflector position is 0° with an average output power value of 14.87 Watt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
30
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信