P. Bodor, E. Somogyi, László Baranyai, J. Lazar, B. Báló
{"title":"用椭圆傅立叶描述符分析葡萄浆果形状","authors":"P. Bodor, E. Somogyi, László Baranyai, J. Lazar, B. Báló","doi":"10.1556/446.2020.10009","DOIUrl":null,"url":null,"abstract":"Grapevine berry shape has important marketing value in the table grape commerce, hence variability evaluation of this characteristic is highly important. In this study berry shape of 5 table grape genotypes: “Fanny”, “Lidi”, “Hamburgi muskotály”, “Moldova”, and “Orsi” were compared. To evaluate the shape variability graphic reconstruction and elliptic Fourier analysis have been carried out. Shape outlines have been investigated and Principal Component Analysis (PCA) has been performed with the SHAPE software package. PCA of the contours showed that 6 out of the 77 principal components were effective to describe shape attributes. The first 6 PCs explained 94.51% of the total variance. PC1 associated with the width and length of the berry. PC2 related to the shape of the top and bottom of the berries, while PC3 linked to the ratio of the top and the bottom width. ANOVA of the principal component scores revealed significant difference among the genotypes. Results suggest that morphology of the berry is a variable not only among but within the accessions. Our findings confirmed that elliptic Fourier descriptors (EFDs) would be a powerful tool for quantifying grapevine berry morphological diversity.","PeriodicalId":20837,"journal":{"name":"Progress in Agricultural Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of the grapevine (Vitis vinifera L.) berry shape by using elliptic Fourier descriptors\",\"authors\":\"P. Bodor, E. Somogyi, László Baranyai, J. Lazar, B. Báló\",\"doi\":\"10.1556/446.2020.10009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grapevine berry shape has important marketing value in the table grape commerce, hence variability evaluation of this characteristic is highly important. In this study berry shape of 5 table grape genotypes: “Fanny”, “Lidi”, “Hamburgi muskotály”, “Moldova”, and “Orsi” were compared. To evaluate the shape variability graphic reconstruction and elliptic Fourier analysis have been carried out. Shape outlines have been investigated and Principal Component Analysis (PCA) has been performed with the SHAPE software package. PCA of the contours showed that 6 out of the 77 principal components were effective to describe shape attributes. The first 6 PCs explained 94.51% of the total variance. PC1 associated with the width and length of the berry. PC2 related to the shape of the top and bottom of the berries, while PC3 linked to the ratio of the top and the bottom width. ANOVA of the principal component scores revealed significant difference among the genotypes. Results suggest that morphology of the berry is a variable not only among but within the accessions. Our findings confirmed that elliptic Fourier descriptors (EFDs) would be a powerful tool for quantifying grapevine berry morphological diversity.\",\"PeriodicalId\":20837,\"journal\":{\"name\":\"Progress in Agricultural Engineering Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Agricultural Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/446.2020.10009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Agricultural Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/446.2020.10009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Analysis of the grapevine (Vitis vinifera L.) berry shape by using elliptic Fourier descriptors
Grapevine berry shape has important marketing value in the table grape commerce, hence variability evaluation of this characteristic is highly important. In this study berry shape of 5 table grape genotypes: “Fanny”, “Lidi”, “Hamburgi muskotály”, “Moldova”, and “Orsi” were compared. To evaluate the shape variability graphic reconstruction and elliptic Fourier analysis have been carried out. Shape outlines have been investigated and Principal Component Analysis (PCA) has been performed with the SHAPE software package. PCA of the contours showed that 6 out of the 77 principal components were effective to describe shape attributes. The first 6 PCs explained 94.51% of the total variance. PC1 associated with the width and length of the berry. PC2 related to the shape of the top and bottom of the berries, while PC3 linked to the ratio of the top and the bottom width. ANOVA of the principal component scores revealed significant difference among the genotypes. Results suggest that morphology of the berry is a variable not only among but within the accessions. Our findings confirmed that elliptic Fourier descriptors (EFDs) would be a powerful tool for quantifying grapevine berry morphological diversity.
期刊介绍:
The Journal publishes original papers, review papers and preliminary communications in the field of agricultural, environmental and process engineering. The main purpose is to show new scientific results, new developments and procedures with special respect to the engineering of crop production and animal husbandry, soil and water management, precision agriculture, information technology in agriculture, advancements in instrumentation and automation, technical and safety aspects of environmental and food engineering.