菱形约束六体问题的稳定性分析

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Muhammad Abubakar Siddique, A. Kashif, M. Shoaib, S. Hussain
{"title":"菱形约束六体问题的稳定性分析","authors":"Muhammad Abubakar Siddique, A. Kashif, M. Shoaib, S. Hussain","doi":"10.1155/2021/5575826","DOIUrl":null,"url":null,"abstract":"<jats:p>We discuss the restricted rhomboidal six-body problem (RR6BP), which has four positive masses at the vertices of the rhombus, and the fifth mass is at the intersection of the two diagonals. These masses always move in rhomboidal CC with diagonals <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mn>2</mn>\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mn>2</mn>\n <mi>b</mi>\n </math>\n </jats:inline-formula>. The sixth body, having a very small mass, does not influence the motion of the five masses, also called primaries. The masses of the primaries are <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>m</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mover accent=\"true\">\n <mi>m</mi>\n <mo>˜</mo>\n </mover>\n </math>\n </jats:inline-formula>. The masses <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>m</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mover accent=\"true\">\n <mi>m</mi>\n <mo>˜</mo>\n </mover>\n </math>\n </jats:inline-formula> are written as functions of parameters <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>b</mi>\n </math>\n </jats:inline-formula> such that they always form a rhomboidal central configuration. The evolution of zero velocity curves is discussed for fixed values of positive masses. Using the first integral of motion, we derive the region of possible motion of test particle <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and identify the value of Jacobian constant <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>C</mi>\n </math>\n </jats:inline-formula> for different energy intervals at which these regions become disconnected. Using semianalytical techniques, we show the existence and uniqueness of equilibrium solutions on the axes and off the axes. We show that, for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>b</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <msqrt>\n <mn>3</mn>\n </msqrt>\n <mo>,</mo>\n <mn>1.1394282249562009</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, there always exist 12 equilibrium points. We also show that all 12 equilibrium points are unstable.</jats:p>","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stability Analysis of the Rhomboidal Restricted Six-Body Problem\",\"authors\":\"Muhammad Abubakar Siddique, A. Kashif, M. Shoaib, S. Hussain\",\"doi\":\"10.1155/2021/5575826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We discuss the restricted rhomboidal six-body problem (RR6BP), which has four positive masses at the vertices of the rhombus, and the fifth mass is at the intersection of the two diagonals. These masses always move in rhomboidal CC with diagonals <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mn>2</mn>\\n <mi>a</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mn>2</mn>\\n <mi>b</mi>\\n </math>\\n </jats:inline-formula>. The sixth body, having a very small mass, does not influence the motion of the five masses, also called primaries. The masses of the primaries are <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mi>m</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mover accent=\\\"true\\\">\\n <mi>m</mi>\\n <mo>˜</mo>\\n </mover>\\n </math>\\n </jats:inline-formula>. The masses <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>m</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mover accent=\\\"true\\\">\\n <mi>m</mi>\\n <mo>˜</mo>\\n </mover>\\n </math>\\n </jats:inline-formula> are written as functions of parameters <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>a</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mi>b</mi>\\n </math>\\n </jats:inline-formula> such that they always form a rhomboidal central configuration. The evolution of zero velocity curves is discussed for fixed values of positive masses. Using the first integral of motion, we derive the region of possible motion of test particle <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>5</mn>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> and identify the value of Jacobian constant <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>C</mi>\\n </math>\\n </jats:inline-formula> for different energy intervals at which these regions become disconnected. Using semianalytical techniques, we show the existence and uniqueness of equilibrium solutions on the axes and off the axes. We show that, for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mi>b</mi>\\n <mo>∈</mo>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <msqrt>\\n <mn>3</mn>\\n </msqrt>\\n <mo>,</mo>\\n <mn>1.1394282249562009</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, there always exist 12 equilibrium points. We also show that all 12 equilibrium points are unstable.</jats:p>\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5575826\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/5575826","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4

摘要

我们讨论了限制菱形六体问题(RR6BP),该问题在菱形的顶点有四个正质量,第五个质量在两条对角线的交点。这些质量体总是在具有对角线2a和2b的菱形CC中移动。质量很小的第六个物体不影响五个质量的运动,也被称为初级。初级的质量是m1=m2=m 0=m和m 3=m4=m~。质量m和m~被写成参数a和b,使得它们总是形成菱形中心构型。讨论了正质量定值情况下零速度曲线的演化。使用运动的第一积分,我们导出了测试粒子m5可能运动的区域,并确定了雅可比常数的值C表示这些区域断开的不同能量间隔。利用半解析技术,我们证明了轴上和轴外平衡解的存在性和唯一性。我们证明了对于b∈1/3,1.1394282249562009,总存在12个平衡点。我们还证明了所有12个平衡点都是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability Analysis of the Rhomboidal Restricted Six-Body Problem
We discuss the restricted rhomboidal six-body problem (RR6BP), which has four positive masses at the vertices of the rhombus, and the fifth mass is at the intersection of the two diagonals. These masses always move in rhomboidal CC with diagonals 2 a and 2 b . The sixth body, having a very small mass, does not influence the motion of the five masses, also called primaries. The masses of the primaries are m 1 = m 2 = m 0 = m and m 3 = m 4 = m ˜ . The masses m and m ˜ are written as functions of parameters a and b such that they always form a rhomboidal central configuration. The evolution of zero velocity curves is discussed for fixed values of positive masses. Using the first integral of motion, we derive the region of possible motion of test particle m 5 and identify the value of Jacobian constant C for different energy intervals at which these regions become disconnected. Using semianalytical techniques, we show the existence and uniqueness of equilibrium solutions on the axes and off the axes. We show that, for b 1 / 3 , 1.1394282249562009 , there always exist 12 equilibrium points. We also show that all 12 equilibrium points are unstable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信