Xiaoqian Mou, Xiaolong Chen, J. Guan, Yunlong Dong, Ningbo Liu
{"title":"基于SCS-GAN的雷达PPI图像海杂波抑制","authors":"Xiaoqian Mou, Xiaolong Chen, J. Guan, Yunlong Dong, Ningbo Liu","doi":"10.1109/lgrs.2020.3012523","DOIUrl":null,"url":null,"abstract":"The problem of strong sea clutter, e.g., sea spikes, may bring in low signal-to-clutter ratio (SCR) and cause great interference to radar marine target detection. However, the sea clutter suppression ability of current algorithms is limited with poor generalization under complex marine environment. In this letter, a novel sea clutter suppression generative adversarial network (SCS-GAN) is designed and employed for marine radar plan-position indicator (PPI) images detection. The SCS-GAN is based on residual networks and attention module, which includes residual attention generator (RAG) and sea clutter discriminator (SCD). In order to expand the data sets and improve generalization ability, clutter-free data set A, simulated sea clutter data set B (containing five types of sea clutter distributions), and actual sea clutter data set C are constructed by means of simulation and acquisition of real radar returns. At last, the parameter, i.e., clutter suppression ratio (CSR) is designed for evaluating the sea clutter suppression performances of the proposed method and other denoising and clutter suppression methods including CBM3D, denoising convolutional neural network (DnCNN), FFDNet, and Pix2pix. After testing with actual data, it is proved that the SCS-GAN has faster clutter removal speed, stronger generalization ability, and at the same time marine targets in images are remained completely.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1886-1890"},"PeriodicalIF":4.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3012523","citationCount":"12","resultStr":"{\"title\":\"Sea Clutter Suppression for Radar PPI Images Based on SCS-GAN\",\"authors\":\"Xiaoqian Mou, Xiaolong Chen, J. Guan, Yunlong Dong, Ningbo Liu\",\"doi\":\"10.1109/lgrs.2020.3012523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of strong sea clutter, e.g., sea spikes, may bring in low signal-to-clutter ratio (SCR) and cause great interference to radar marine target detection. However, the sea clutter suppression ability of current algorithms is limited with poor generalization under complex marine environment. In this letter, a novel sea clutter suppression generative adversarial network (SCS-GAN) is designed and employed for marine radar plan-position indicator (PPI) images detection. The SCS-GAN is based on residual networks and attention module, which includes residual attention generator (RAG) and sea clutter discriminator (SCD). In order to expand the data sets and improve generalization ability, clutter-free data set A, simulated sea clutter data set B (containing five types of sea clutter distributions), and actual sea clutter data set C are constructed by means of simulation and acquisition of real radar returns. At last, the parameter, i.e., clutter suppression ratio (CSR) is designed for evaluating the sea clutter suppression performances of the proposed method and other denoising and clutter suppression methods including CBM3D, denoising convolutional neural network (DnCNN), FFDNet, and Pix2pix. After testing with actual data, it is proved that the SCS-GAN has faster clutter removal speed, stronger generalization ability, and at the same time marine targets in images are remained completely.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"18 1\",\"pages\":\"1886-1890\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/lgrs.2020.3012523\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/lgrs.2020.3012523\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2020.3012523","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Sea Clutter Suppression for Radar PPI Images Based on SCS-GAN
The problem of strong sea clutter, e.g., sea spikes, may bring in low signal-to-clutter ratio (SCR) and cause great interference to radar marine target detection. However, the sea clutter suppression ability of current algorithms is limited with poor generalization under complex marine environment. In this letter, a novel sea clutter suppression generative adversarial network (SCS-GAN) is designed and employed for marine radar plan-position indicator (PPI) images detection. The SCS-GAN is based on residual networks and attention module, which includes residual attention generator (RAG) and sea clutter discriminator (SCD). In order to expand the data sets and improve generalization ability, clutter-free data set A, simulated sea clutter data set B (containing five types of sea clutter distributions), and actual sea clutter data set C are constructed by means of simulation and acquisition of real radar returns. At last, the parameter, i.e., clutter suppression ratio (CSR) is designed for evaluating the sea clutter suppression performances of the proposed method and other denoising and clutter suppression methods including CBM3D, denoising convolutional neural network (DnCNN), FFDNet, and Pix2pix. After testing with actual data, it is proved that the SCS-GAN has faster clutter removal speed, stronger generalization ability, and at the same time marine targets in images are remained completely.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.