次谱拉普拉斯算子的半线性Dirichlet问题

IF 1 3区 数学 Q1 MATHEMATICS
I. Biočić
{"title":"次谱拉普拉斯算子的半线性Dirichlet问题","authors":"I. Biočić","doi":"10.3934/cpaa.2023012","DOIUrl":null,"url":null,"abstract":"We study semilinear problems in bounded C1,1 domains for non-local operators with a boundary condition. The operators cover and extend the case of the spectral fractional Laplacian. We also study harmonic functions with respect to the nonlocal operator and boundary behaviour of Green and Poisson potentials. AMS 2020 Mathematics Subject Classification: Primary 35J61, 35R11; Secondary 35C15, 31B10, 31B25, 31C05, 60J35","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semilinear Dirichlet problem for subordinate spectral Laplacian\",\"authors\":\"I. Biočić\",\"doi\":\"10.3934/cpaa.2023012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study semilinear problems in bounded C1,1 domains for non-local operators with a boundary condition. The operators cover and extend the case of the spectral fractional Laplacian. We also study harmonic functions with respect to the nonlocal operator and boundary behaviour of Green and Poisson potentials. AMS 2020 Mathematics Subject Classification: Primary 35J61, 35R11; Secondary 35C15, 31B10, 31B25, 31C05, 60J35\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023012\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/cpaa.2023012","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究具有边界条件的非局部算子在有界C1,1域上的半线性问题。这些算子涵盖并扩展了谱分数阶拉普拉斯算子的情况。我们还研究了关于非局部算子的调和函数以及格林势和泊松势的边界行为。AMS 2020数学学科分类:初级35J61, 35R11;二级35C15、31B10、31B25、31C05、60J35
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semilinear Dirichlet problem for subordinate spectral Laplacian
We study semilinear problems in bounded C1,1 domains for non-local operators with a boundary condition. The operators cover and extend the case of the spectral fractional Laplacian. We also study harmonic functions with respect to the nonlocal operator and boundary behaviour of Green and Poisson potentials. AMS 2020 Mathematics Subject Classification: Primary 35J61, 35R11; Secondary 35C15, 31B10, 31B25, 31C05, 60J35
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信