D. K. Behara, Jalajakshi Tammineni, Mukkara Sudha Maheswari
{"title":"TiO2/ZnO: ii型异质结构对电化学结晶紫染料降解的研究","authors":"D. K. Behara, Jalajakshi Tammineni, Mukkara Sudha Maheswari","doi":"10.20450/mjcce.2020.2058","DOIUrl":null,"url":null,"abstract":"Semiconductor nanomaterials with proper band edge alignments forming “heterostructure” assemblies have significant importance in water splitting, dye degradation, and other electrochemical studies. The formed heterojunction between material phases facilitates fast charge carrier transport and, thereby, improves electrochemical performance in associated processes. Herein, we report a type-II heterostructure combining TiO 2 and ZnO nanomaterials for electrochemical crystal violet dye degradation studies. The rationale in choosing the above materials (TiO 2 , ZnO) in the present study includes stability, lack of toxicity, and high oxidation power, but they also facilitate fast charge carrier movements due to proper band edge alignments, forming a type-II heterostructure assembly. Cyclic voltammetry, combined with ultraviolet-visible analysis, was used to identify the cathodic and anodic peak currents and trace the exact mechanism of dye degradation. The electro-catalytic performance of TiO 2 /ZnO heterostructured materials fabricated on titania (Ti) substrate show higher performance, in comparison to all individual material interfaces, due to synergistic interaction and synchronized charge transport.","PeriodicalId":18088,"journal":{"name":"Macedonian Journal of Chemistry and Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TiO2/ZnO: Type-II Heterostructures for electrochemical crystal violet dye degradation studies\",\"authors\":\"D. K. Behara, Jalajakshi Tammineni, Mukkara Sudha Maheswari\",\"doi\":\"10.20450/mjcce.2020.2058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor nanomaterials with proper band edge alignments forming “heterostructure” assemblies have significant importance in water splitting, dye degradation, and other electrochemical studies. The formed heterojunction between material phases facilitates fast charge carrier transport and, thereby, improves electrochemical performance in associated processes. Herein, we report a type-II heterostructure combining TiO 2 and ZnO nanomaterials for electrochemical crystal violet dye degradation studies. The rationale in choosing the above materials (TiO 2 , ZnO) in the present study includes stability, lack of toxicity, and high oxidation power, but they also facilitate fast charge carrier movements due to proper band edge alignments, forming a type-II heterostructure assembly. Cyclic voltammetry, combined with ultraviolet-visible analysis, was used to identify the cathodic and anodic peak currents and trace the exact mechanism of dye degradation. The electro-catalytic performance of TiO 2 /ZnO heterostructured materials fabricated on titania (Ti) substrate show higher performance, in comparison to all individual material interfaces, due to synergistic interaction and synchronized charge transport.\",\"PeriodicalId\":18088,\"journal\":{\"name\":\"Macedonian Journal of Chemistry and Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macedonian Journal of Chemistry and Chemical Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.20450/mjcce.2020.2058\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macedonian Journal of Chemistry and Chemical Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2020.2058","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
TiO2/ZnO: Type-II Heterostructures for electrochemical crystal violet dye degradation studies
Semiconductor nanomaterials with proper band edge alignments forming “heterostructure” assemblies have significant importance in water splitting, dye degradation, and other electrochemical studies. The formed heterojunction between material phases facilitates fast charge carrier transport and, thereby, improves electrochemical performance in associated processes. Herein, we report a type-II heterostructure combining TiO 2 and ZnO nanomaterials for electrochemical crystal violet dye degradation studies. The rationale in choosing the above materials (TiO 2 , ZnO) in the present study includes stability, lack of toxicity, and high oxidation power, but they also facilitate fast charge carrier movements due to proper band edge alignments, forming a type-II heterostructure assembly. Cyclic voltammetry, combined with ultraviolet-visible analysis, was used to identify the cathodic and anodic peak currents and trace the exact mechanism of dye degradation. The electro-catalytic performance of TiO 2 /ZnO heterostructured materials fabricated on titania (Ti) substrate show higher performance, in comparison to all individual material interfaces, due to synergistic interaction and synchronized charge transport.
期刊介绍:
Macedonian Journal of Chemistry and Chemical Engineering (Maced. J. Chem. Chem. Eng.) is an official publication of the Society of Chemists and Technologists of Macedonia. It is a not-for-profit open acess journal published twice a year. The journal publishes original scientific papers, short communications, reviews and educational papers from all fields of chemistry, chemical engineering, food technology, biotechnology and material sciences, metallurgy and related fields. The papers published in the Journal are summarized in Chemical Abstracts.