{"title":"外经典场存在下原子的边缘分布和相关双模与三能级原子相互作用的压缩现象","authors":"A. Obada, E. Khalil, S. Sanad, H. Habeba","doi":"10.1155/2022/1309673","DOIUrl":null,"url":null,"abstract":"The influence of the external classical field on a correlated two-mode of the electromagnetic field interacting with a three-level atom in the \n \n Λ\n \n structure is studied. A rotation of the atomic basis is used to remove the classical field terms. The time-dependent wave function is obtained by solving the Schrödinger equation. The influence of the classical field on the phenomenon of revival, collapse, squeezing, and marginal atomic distribution are discussed. In our analysis, the cavity field is prepared in the entangled pair coherent states and the atomic system in the upper state. The results showed that the occupation of the atomic level is significantly affected by the addition of the classical field. The presence of the classical field reduces the squeezing intervals and the extreme values of the atomic marginal distribution.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Marginal Distribution and Squeezing Phenomena of Correlated Two Modes Interacting with a Three-Level Atom in the Presence of an External Classical Field\",\"authors\":\"A. Obada, E. Khalil, S. Sanad, H. Habeba\",\"doi\":\"10.1155/2022/1309673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of the external classical field on a correlated two-mode of the electromagnetic field interacting with a three-level atom in the \\n \\n Λ\\n \\n structure is studied. A rotation of the atomic basis is used to remove the classical field terms. The time-dependent wave function is obtained by solving the Schrödinger equation. The influence of the classical field on the phenomenon of revival, collapse, squeezing, and marginal atomic distribution are discussed. In our analysis, the cavity field is prepared in the entangled pair coherent states and the atomic system in the upper state. The results showed that the occupation of the atomic level is significantly affected by the addition of the classical field. The presence of the classical field reduces the squeezing intervals and the extreme values of the atomic marginal distribution.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1309673\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/1309673","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Atomic Marginal Distribution and Squeezing Phenomena of Correlated Two Modes Interacting with a Three-Level Atom in the Presence of an External Classical Field
The influence of the external classical field on a correlated two-mode of the electromagnetic field interacting with a three-level atom in the
Λ
structure is studied. A rotation of the atomic basis is used to remove the classical field terms. The time-dependent wave function is obtained by solving the Schrödinger equation. The influence of the classical field on the phenomenon of revival, collapse, squeezing, and marginal atomic distribution are discussed. In our analysis, the cavity field is prepared in the entangled pair coherent states and the atomic system in the upper state. The results showed that the occupation of the atomic level is significantly affected by the addition of the classical field. The presence of the classical field reduces the squeezing intervals and the extreme values of the atomic marginal distribution.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.