斯帕尔·安德森风险模型中的破产时刻

IF 1.5 Q3 BUSINESS, FINANCE
D. Dickson
{"title":"斯帕尔·安德森风险模型中的破产时刻","authors":"D. Dickson","doi":"10.1017/S1748499522000124","DOIUrl":null,"url":null,"abstract":"Abstract We derive formulae for the moments of the time of ruin in both ordinary and modified Sparre Andersen risk models without specifying either the inter-claim time distribution or the individual claim amount distribution. We illustrate the application of our results in the special case of exponentially distributed claims, as well as for the following ordinary models: the classical risk model, phase-type(2) risk models, and the Erlang( \n$\\mathscr{n}$\n ) risk model. We also show how the key quantities for modified models can be found.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"17 1","pages":"63 - 82"},"PeriodicalIF":1.5000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The moments of the time of ruin in Sparre Andersen risk models\",\"authors\":\"D. Dickson\",\"doi\":\"10.1017/S1748499522000124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We derive formulae for the moments of the time of ruin in both ordinary and modified Sparre Andersen risk models without specifying either the inter-claim time distribution or the individual claim amount distribution. We illustrate the application of our results in the special case of exponentially distributed claims, as well as for the following ordinary models: the classical risk model, phase-type(2) risk models, and the Erlang( \\n$\\\\mathscr{n}$\\n ) risk model. We also show how the key quantities for modified models can be found.\",\"PeriodicalId\":44135,\"journal\":{\"name\":\"Annals of Actuarial Science\",\"volume\":\"17 1\",\"pages\":\"63 - 82\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Actuarial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1748499522000124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1748499522000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 3

摘要

摘要我们导出了普通和修正的Sparre-Andersen风险模型中破产时刻的公式,而没有指定索赔间时间分布或个人索赔金额分布。我们说明了我们的结果在指数分布索赔的特殊情况下的应用,以及以下普通模型:经典风险模型、阶段型(2)风险模型和Erlang($\mathscr{n}$)风险模型。我们还展示了如何找到修改模型的关键数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The moments of the time of ruin in Sparre Andersen risk models
Abstract We derive formulae for the moments of the time of ruin in both ordinary and modified Sparre Andersen risk models without specifying either the inter-claim time distribution or the individual claim amount distribution. We illustrate the application of our results in the special case of exponentially distributed claims, as well as for the following ordinary models: the classical risk model, phase-type(2) risk models, and the Erlang( $\mathscr{n}$ ) risk model. We also show how the key quantities for modified models can be found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信