关于帕普斯线的排列,前后和到点

IF 0.6 4区 数学 Q3 MATHEMATICS
Magdalena Lampa-Baczy'nska, D. W'ojcik
{"title":"关于帕普斯线的排列,前后和到点","authors":"Magdalena Lampa-Baczy'nska, D. W'ojcik","doi":"10.14492/hokmj/2021-521","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study the famous Pappus configuration of $9$ lines and its dual arrangement. We show among others that by applying the Pappus Theorem to the dual arrangement we obtain the configuration corresponding to the initial data of beginning configuration. We consider also the Pappus arrangements with some additional incidences and we establish algebraic conditions paralleling with these incidences.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Pappus arrangement of lines, forth and back and to the point\",\"authors\":\"Magdalena Lampa-Baczy'nska, D. W'ojcik\",\"doi\":\"10.14492/hokmj/2021-521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to study the famous Pappus configuration of $9$ lines and its dual arrangement. We show among others that by applying the Pappus Theorem to the dual arrangement we obtain the configuration corresponding to the initial data of beginning configuration. We consider also the Pappus arrangements with some additional incidences and we establish algebraic conditions paralleling with these incidences.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/hokmj/2021-521\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/2021-521","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究著名的$9$线的Pappus构形及其对偶排列。通过对对偶排列应用Pappus定理,我们得到了初始构型初始数据所对应的构型。我们还考虑了带有一些附加事件的Pappus排列,并建立了与这些事件平行的代数条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Pappus arrangement of lines, forth and back and to the point
The purpose of this paper is to study the famous Pappus configuration of $9$ lines and its dual arrangement. We show among others that by applying the Pappus Theorem to the dual arrangement we obtain the configuration corresponding to the initial data of beginning configuration. We consider also the Pappus arrangements with some additional incidences and we establish algebraic conditions paralleling with these incidences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信