使用数据挖掘和统计方法检测信用卡欺诈

S. Beigi, M. Amin-Naseri
{"title":"使用数据挖掘和统计方法检测信用卡欺诈","authors":"S. Beigi, M. Amin-Naseri","doi":"10.22044/JADM.2019.7506.1894","DOIUrl":null,"url":null,"abstract":"Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-sensitive learning for credit card fraud detection. In the first step, useful features are identified using genetic algorithm. Next, the optimal resampling strategy is determined based on the design of experiments (DOE) and response surface methodologies. Finally, the cost sensitive C4.5 algorithm is used as the base learner in the Adaboost algorithm. Using a real-time data set, results show that applying the proposed method significantly reduces the misclassification cost by at least 14% compared with Decision tree, Naive bayes, Bayesian Network, Neural network and Artificial immune system.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Credit Card Fraud Detection using Data mining and Statistical Methods\",\"authors\":\"S. Beigi, M. Amin-Naseri\",\"doi\":\"10.22044/JADM.2019.7506.1894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-sensitive learning for credit card fraud detection. In the first step, useful features are identified using genetic algorithm. Next, the optimal resampling strategy is determined based on the design of experiments (DOE) and response surface methodologies. Finally, the cost sensitive C4.5 algorithm is used as the base learner in the Adaboost algorithm. Using a real-time data set, results show that applying the proposed method significantly reduces the misclassification cost by at least 14% compared with Decision tree, Naive bayes, Bayesian Network, Neural network and Artificial immune system.\",\"PeriodicalId\":32592,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JADM.2019.7506.1894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2019.7506.1894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于当今技术和商业的进步,欺诈检测已成为金融交易的关键组成部分。考虑到大型数据集中的大量数据,手动检测欺诈交易变得更加困难。在这项研究中,我们提出了一种结合数据挖掘和统计任务的方法,利用特征选择、重采样和成本敏感学习来检测信用卡欺诈。在第一步中,使用遗传算法识别有用的特征。接下来,基于实验设计(DOE)和响应面方法确定最优重采样策略。最后,使用成本敏感的C4.5算法作为Adaboost算法的基础学习器。使用实时数据集,结果表明,与决策树、朴素贝叶斯、贝叶斯网络、神经网络和人工免疫系统相比,应用该方法可以显著降低至少14%的误分类成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Credit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-sensitive learning for credit card fraud detection. In the first step, useful features are identified using genetic algorithm. Next, the optimal resampling strategy is determined based on the design of experiments (DOE) and response surface methodologies. Finally, the cost sensitive C4.5 algorithm is used as the base learner in the Adaboost algorithm. Using a real-time data set, results show that applying the proposed method significantly reduces the misclassification cost by at least 14% compared with Decision tree, Naive bayes, Bayesian Network, Neural network and Artificial immune system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信