Fibonacci、Pell和Jacobthal数的几个加法公式

IF 0.4 Q4 MATHEMATICS
Göksal Bilgici, Tuncay Deniz Şentürk
{"title":"Fibonacci、Pell和Jacobthal数的几个加法公式","authors":"Göksal Bilgici, Tuncay Deniz Şentürk","doi":"10.2478/amsil-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we obtain a closed form for F?i=1k ${F_{\\sum\\nolimits_{i = 1}^k {} }}$ , P?i=1k ${P_{\\sum\\nolimits_{i = 1}^k {} }}$ and J?i=1k ${J_{\\sum\\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases F?i=1n ${F_{\\sum\\nolimits_{i = 1}^n {} }}$ , P?i=1n ${P_{\\sum\\nolimits_{i = 1}^n {} }}$ and J?i=1n ${J_{\\sum\\nolimits_{i = 1}^n {} }}$ for any arbitrary positive integer n.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"33 1","pages":"55 - 65"},"PeriodicalIF":0.4000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers\",\"authors\":\"Göksal Bilgici, Tuncay Deniz Şentürk\",\"doi\":\"10.2478/amsil-2019-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we obtain a closed form for F?i=1k ${F_{\\\\sum\\\\nolimits_{i = 1}^k {} }}$ , P?i=1k ${P_{\\\\sum\\\\nolimits_{i = 1}^k {} }}$ and J?i=1k ${J_{\\\\sum\\\\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases F?i=1n ${F_{\\\\sum\\\\nolimits_{i = 1}^n {} }}$ , P?i=1n ${P_{\\\\sum\\\\nolimits_{i = 1}^n {} }}$ and J?i=1n ${J_{\\\\sum\\\\nolimits_{i = 1}^n {} }}$ for any arbitrary positive integer n.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"33 1\",\"pages\":\"55 - 65\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2019-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要在本文中,我们得到了F?i=1k$,P?i=1k$和J?对于一些正整数k,i=1k${J_{\sum\nolimits_{i=1}^k{}}$,其中Fr、Pr和Jr分别是第th个Fibonacci、Pell和Jacobthal数。我们还给出了一般情况F?i=1n$,P?i=1n${P_{\sum\nolimits_{i=1}^n{}}$和J?对于任意正整数n,i=1n${J_{\sum\nolimits_{i=1}^n{}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers
Abstract In this paper, we obtain a closed form for F?i=1k ${F_{\sum\nolimits_{i = 1}^k {} }}$ , P?i=1k ${P_{\sum\nolimits_{i = 1}^k {} }}$ and J?i=1k ${J_{\sum\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases F?i=1n ${F_{\sum\nolimits_{i = 1}^n {} }}$ , P?i=1n ${P_{\sum\nolimits_{i = 1}^n {} }}$ and J?i=1n ${J_{\sum\nolimits_{i = 1}^n {} }}$ for any arbitrary positive integer n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信