{"title":"Fibonacci、Pell和Jacobthal数的几个加法公式","authors":"Göksal Bilgici, Tuncay Deniz Şentürk","doi":"10.2478/amsil-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we obtain a closed form for F?i=1k ${F_{\\sum\\nolimits_{i = 1}^k {} }}$ , P?i=1k ${P_{\\sum\\nolimits_{i = 1}^k {} }}$ and J?i=1k ${J_{\\sum\\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases F?i=1n ${F_{\\sum\\nolimits_{i = 1}^n {} }}$ , P?i=1n ${P_{\\sum\\nolimits_{i = 1}^n {} }}$ and J?i=1n ${J_{\\sum\\nolimits_{i = 1}^n {} }}$ for any arbitrary positive integer n.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"33 1","pages":"55 - 65"},"PeriodicalIF":0.4000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers\",\"authors\":\"Göksal Bilgici, Tuncay Deniz Şentürk\",\"doi\":\"10.2478/amsil-2019-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we obtain a closed form for F?i=1k ${F_{\\\\sum\\\\nolimits_{i = 1}^k {} }}$ , P?i=1k ${P_{\\\\sum\\\\nolimits_{i = 1}^k {} }}$ and J?i=1k ${J_{\\\\sum\\\\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases F?i=1n ${F_{\\\\sum\\\\nolimits_{i = 1}^n {} }}$ , P?i=1n ${P_{\\\\sum\\\\nolimits_{i = 1}^n {} }}$ and J?i=1n ${J_{\\\\sum\\\\nolimits_{i = 1}^n {} }}$ for any arbitrary positive integer n.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"33 1\",\"pages\":\"55 - 65\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2019-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers
Abstract In this paper, we obtain a closed form for F?i=1k ${F_{\sum\nolimits_{i = 1}^k {} }}$ , P?i=1k ${P_{\sum\nolimits_{i = 1}^k {} }}$ and J?i=1k ${J_{\sum\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases F?i=1n ${F_{\sum\nolimits_{i = 1}^n {} }}$ , P?i=1n ${P_{\sum\nolimits_{i = 1}^n {} }}$ and J?i=1n ${J_{\sum\nolimits_{i = 1}^n {} }}$ for any arbitrary positive integer n.