自由定描述理论——序列演算与割消去

IF 0.6 Q2 LOGIC
Andrzej Indrzejczak
{"title":"自由定描述理论——序列演算与割消去","authors":"Andrzej Indrzejczak","doi":"10.12775/llp.2020.020","DOIUrl":null,"url":null,"abstract":"We provide an application of a sequent calculus framework to the formalization of definite descriptions. It is a continuation of research undertaken in [20, 22]. In the present paper a so-called free description theory is examined in the context of different kinds of free logic, including systems applied in computer science and constructive mathematics for dealing with partial functions. It is shown that the same theory in different logics may be formalised by means of different rules and gives results of varying strength. For all presented calculi a constructive cut elimination is provided.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":"29 1","pages":"505-539"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Free Definite Description Theory – Sequent Calculi and Cut Elimination\",\"authors\":\"Andrzej Indrzejczak\",\"doi\":\"10.12775/llp.2020.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an application of a sequent calculus framework to the formalization of definite descriptions. It is a continuation of research undertaken in [20, 22]. In the present paper a so-called free description theory is examined in the context of different kinds of free logic, including systems applied in computer science and constructive mathematics for dealing with partial functions. It is shown that the same theory in different logics may be formalised by means of different rules and gives results of varying strength. For all presented calculi a constructive cut elimination is provided.\",\"PeriodicalId\":43501,\"journal\":{\"name\":\"Logic and Logical Philosophy\",\"volume\":\"29 1\",\"pages\":\"505-539\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Logical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/llp.2020.020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2020.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 6

摘要

我们提供了一个序演算框架在确定描述形式化中的应用。这是[20,22]研究的延续。本文在不同类型的自由逻辑的背景下研究了所谓的自由描述理论,包括在计算机科学和构造数学中用于处理偏函数的系统。证明了同一理论在不同的逻辑中可以用不同的规则来形式化,并给出了不同强度的结果。对于所有提出的结石,提供了一个建设性的切割消除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free Definite Description Theory – Sequent Calculi and Cut Elimination
We provide an application of a sequent calculus framework to the formalization of definite descriptions. It is a continuation of research undertaken in [20, 22]. In the present paper a so-called free description theory is examined in the context of different kinds of free logic, including systems applied in computer science and constructive mathematics for dealing with partial functions. It is shown that the same theory in different logics may be formalised by means of different rules and gives results of varying strength. For all presented calculi a constructive cut elimination is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
40.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信