{"title":"一个双线性方程的可积性:奇异性分析与维数","authors":"S. Sakovich","doi":"10.33581/1561-4085-2021-24-4-311-316","DOIUrl":null,"url":null,"abstract":"The integrability of a four-dimensional sixth-order bilinear equation associated with the exceptional affine Lie algebra D(1)4 is studied by means of the singularity analysis. This equation is shown to pass the Painlevé test in three distinct cases of its coefficients, exactly when the equation is effectively a three-dimensional one, equivalent to the BKP equation.","PeriodicalId":43601,"journal":{"name":"Nonlinear Phenomena in Complex Systems","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrability of One Bilinear Equation: Singularity Analysis and Dimension\",\"authors\":\"S. Sakovich\",\"doi\":\"10.33581/1561-4085-2021-24-4-311-316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integrability of a four-dimensional sixth-order bilinear equation associated with the exceptional affine Lie algebra D(1)4 is studied by means of the singularity analysis. This equation is shown to pass the Painlevé test in three distinct cases of its coefficients, exactly when the equation is effectively a three-dimensional one, equivalent to the BKP equation.\",\"PeriodicalId\":43601,\"journal\":{\"name\":\"Nonlinear Phenomena in Complex Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Phenomena in Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/1561-4085-2021-24-4-311-316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Phenomena in Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/1561-4085-2021-24-4-311-316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrability of One Bilinear Equation: Singularity Analysis and Dimension
The integrability of a four-dimensional sixth-order bilinear equation associated with the exceptional affine Lie algebra D(1)4 is studied by means of the singularity analysis. This equation is shown to pass the Painlevé test in three distinct cases of its coefficients, exactly when the equation is effectively a three-dimensional one, equivalent to the BKP equation.