关于一般稀疏混合线性解的评价

IF 1.8 3区 数学 Q1 MATHEMATICS
Afrah Farea, M. S. Çelebi
{"title":"关于一般稀疏混合线性解的评价","authors":"Afrah Farea, M. S. Çelebi","doi":"10.1002/nla.2469","DOIUrl":null,"url":null,"abstract":"General sparse hybrid solvers are commonly used kernels for solving wide range of scientific and engineering problems. This work addresses the current problems of efficiently solving general sparse linear equations with direct/iterative hybrid solvers on many core distributed clusters. We briefly discuss the solution stages of Maphys, HIPS, and PDSLin hybrid solvers for large sparse linear systems with their major algorithmic differences. In this category of solvers, different methods with sophisticated preconditioning algorithms are suggested to solve the trade off between memory and convergence. Such solutions require a certain hierarchical level of parallelism more suitable for modern supercomputers that allow to scale for thousand numbers of processors using Schur complement framework. We study the effect of reordering and analyze the performance, scalability as well as memory for each solve phase of PDSLin, Maphys, and HIPS hybrid solvers using large set of challenging matrices arising from different actual applications and compare the results with SuperLU_DIST direct solver. We specifically focus on the level of parallel mechanisms used by the hybrid solvers and the effect on scalability. Tuning and Analysis Utilities (TAU) is employed to assess the efficient usage of heap memory profile and measuring communication volume. The tests are run on high performance large memory clusters using up to 512 processors.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the evaluation of general sparse hybrid linear solvers\",\"authors\":\"Afrah Farea, M. S. Çelebi\",\"doi\":\"10.1002/nla.2469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General sparse hybrid solvers are commonly used kernels for solving wide range of scientific and engineering problems. This work addresses the current problems of efficiently solving general sparse linear equations with direct/iterative hybrid solvers on many core distributed clusters. We briefly discuss the solution stages of Maphys, HIPS, and PDSLin hybrid solvers for large sparse linear systems with their major algorithmic differences. In this category of solvers, different methods with sophisticated preconditioning algorithms are suggested to solve the trade off between memory and convergence. Such solutions require a certain hierarchical level of parallelism more suitable for modern supercomputers that allow to scale for thousand numbers of processors using Schur complement framework. We study the effect of reordering and analyze the performance, scalability as well as memory for each solve phase of PDSLin, Maphys, and HIPS hybrid solvers using large set of challenging matrices arising from different actual applications and compare the results with SuperLU_DIST direct solver. We specifically focus on the level of parallel mechanisms used by the hybrid solvers and the effect on scalability. Tuning and Analysis Utilities (TAU) is employed to assess the efficient usage of heap memory profile and measuring communication volume. The tests are run on high performance large memory clusters using up to 512 processors.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2469\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2469","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通用稀疏混合求解器是解决广泛科学和工程问题的常用内核。这项工作解决了当前在许多核心分布式集群上使用直接/迭代混合求解器有效求解一般稀疏线性方程的问题。我们简要讨论了大型稀疏线性系统的Maphys、HIPS和PDSL混合求解器的求解阶段及其主要算法差异。在这类求解器中,建议使用不同的方法和复杂的预处理算法来解决记忆和收敛之间的折衷问题。这样的解决方案需要一定的层次级并行性,更适合现代超级计算机,允许使用Schur互补框架扩展数千个处理器。我们研究了重新排序的影响,并使用不同实际应用中产生的大量具有挑战性的矩阵分析了PDSLin、Maphys和HIPS混合求解器每个求解阶段的性能、可扩展性和内存,并将结果与SuperLU_DIST直接求解器进行了比较。我们特别关注混合求解器使用的并行机制的级别以及对可伸缩性的影响。调优和分析实用程序(TAU)用于评估堆内存配置文件的有效使用情况和测量通信量。这些测试在使用多达512个处理器的高性能大型内存集群上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the evaluation of general sparse hybrid linear solvers
General sparse hybrid solvers are commonly used kernels for solving wide range of scientific and engineering problems. This work addresses the current problems of efficiently solving general sparse linear equations with direct/iterative hybrid solvers on many core distributed clusters. We briefly discuss the solution stages of Maphys, HIPS, and PDSLin hybrid solvers for large sparse linear systems with their major algorithmic differences. In this category of solvers, different methods with sophisticated preconditioning algorithms are suggested to solve the trade off between memory and convergence. Such solutions require a certain hierarchical level of parallelism more suitable for modern supercomputers that allow to scale for thousand numbers of processors using Schur complement framework. We study the effect of reordering and analyze the performance, scalability as well as memory for each solve phase of PDSLin, Maphys, and HIPS hybrid solvers using large set of challenging matrices arising from different actual applications and compare the results with SuperLU_DIST direct solver. We specifically focus on the level of parallel mechanisms used by the hybrid solvers and the effect on scalability. Tuning and Analysis Utilities (TAU) is employed to assess the efficient usage of heap memory profile and measuring communication volume. The tests are run on high performance large memory clusters using up to 512 processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信