Alexis Comber, Martin Callaghan, Paul Harris, Binbin Lu, Nick Malleson, Chris Brunsdon
{"title":"gwverse:一个新的通用地理加权R包模板","authors":"Alexis Comber, Martin Callaghan, Paul Harris, Binbin Lu, Nick Malleson, Chris Brunsdon","doi":"10.1111/gean.12337","DOIUrl":null,"url":null,"abstract":"<p>GWR is a popular approach for investigating the spatial variation in relationships between response and predictor variables, and critically for investigating and understanding process spatial heterogeneity. The geographically weighted (GW) framework is increasingly used to accommodate different types of models and analyses, reflecting a wider desire to explore spatial variation in model parameters and outputs. However, the growth in the use of GWR and different GW models has only been partially supported by package development in both R and Python, the major coding environments for spatial analysis. The result is that refinements have been inconsistently included within GWR and GW functions in any given package. This paper outlines the structure of a new <span>gwverse</span>\npackage, that may over time replace <span>GWmodel</span>, that takes advantage of recent developments in the composition of complex, integrated packages. It conceptualizes <span>gwverse</span> as having a modular structure, that separates core GW functionality and applications such as GWR. It adopts a function factory approach, in which bespoke functions are created and returned to the user based on user-defined parameters. The paper introduces two demonstrator modules that can be used to undertake GWR and identifies a number of key considerations and next steps.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"54 3","pages":"685-709"},"PeriodicalIF":3.3000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12337","citationCount":"2","resultStr":"{\"title\":\"gwverse: A Template for a New Generic Geographically Weighted R Package\",\"authors\":\"Alexis Comber, Martin Callaghan, Paul Harris, Binbin Lu, Nick Malleson, Chris Brunsdon\",\"doi\":\"10.1111/gean.12337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>GWR is a popular approach for investigating the spatial variation in relationships between response and predictor variables, and critically for investigating and understanding process spatial heterogeneity. The geographically weighted (GW) framework is increasingly used to accommodate different types of models and analyses, reflecting a wider desire to explore spatial variation in model parameters and outputs. However, the growth in the use of GWR and different GW models has only been partially supported by package development in both R and Python, the major coding environments for spatial analysis. The result is that refinements have been inconsistently included within GWR and GW functions in any given package. This paper outlines the structure of a new <span>gwverse</span>\\npackage, that may over time replace <span>GWmodel</span>, that takes advantage of recent developments in the composition of complex, integrated packages. It conceptualizes <span>gwverse</span> as having a modular structure, that separates core GW functionality and applications such as GWR. It adopts a function factory approach, in which bespoke functions are created and returned to the user based on user-defined parameters. The paper introduces two demonstrator modules that can be used to undertake GWR and identifies a number of key considerations and next steps.</p>\",\"PeriodicalId\":12533,\"journal\":{\"name\":\"Geographical Analysis\",\"volume\":\"54 3\",\"pages\":\"685-709\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12337\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographical Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gean.12337\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12337","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
gwverse: A Template for a New Generic Geographically Weighted R Package
GWR is a popular approach for investigating the spatial variation in relationships between response and predictor variables, and critically for investigating and understanding process spatial heterogeneity. The geographically weighted (GW) framework is increasingly used to accommodate different types of models and analyses, reflecting a wider desire to explore spatial variation in model parameters and outputs. However, the growth in the use of GWR and different GW models has only been partially supported by package development in both R and Python, the major coding environments for spatial analysis. The result is that refinements have been inconsistently included within GWR and GW functions in any given package. This paper outlines the structure of a new gwverse
package, that may over time replace GWmodel, that takes advantage of recent developments in the composition of complex, integrated packages. It conceptualizes gwverse as having a modular structure, that separates core GW functionality and applications such as GWR. It adopts a function factory approach, in which bespoke functions are created and returned to the user based on user-defined parameters. The paper introduces two demonstrator modules that can be used to undertake GWR and identifies a number of key considerations and next steps.
期刊介绍:
First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.