{"title":"Calaby-Yau 3褶d-临界轨迹和壁面交叉的双几何","authors":"Yukinobu Toda","doi":"10.14231/ag-2022-016","DOIUrl":null,"url":null,"abstract":"The notion of d-critical loci was introduced by Joyce in order to give classical shadows of $(-1)$-shifted symplectic derived schemes. In this paper, we discuss birational geometry for d-critical loci, by introducing notions such as `d-critical flips', `d-critical flops', etc. They are not birational maps of the underlying spaces, but rather should be understood as virtual birational maps. We show that several wall-crossing phenomena of moduli spaces of stable objects on Calabi-Yau 3-folds are described in terms of d-critical birational geometry. Among them, we show that wall-crossing diagrams of Pandharipande-Thomas (PT) stable pair moduli spaces, which are relevant in showing the rationality of PT generating series, form a d-critical minimal model program.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Birational geometry for d-critical loci and wall-crossing in Calaby–Yau 3-folds\",\"authors\":\"Yukinobu Toda\",\"doi\":\"10.14231/ag-2022-016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of d-critical loci was introduced by Joyce in order to give classical shadows of $(-1)$-shifted symplectic derived schemes. In this paper, we discuss birational geometry for d-critical loci, by introducing notions such as `d-critical flips', `d-critical flops', etc. They are not birational maps of the underlying spaces, but rather should be understood as virtual birational maps. We show that several wall-crossing phenomena of moduli spaces of stable objects on Calabi-Yau 3-folds are described in terms of d-critical birational geometry. Among them, we show that wall-crossing diagrams of Pandharipande-Thomas (PT) stable pair moduli spaces, which are relevant in showing the rationality of PT generating series, form a d-critical minimal model program.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2022-016\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2022-016","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Birational geometry for d-critical loci and wall-crossing in Calaby–Yau 3-folds
The notion of d-critical loci was introduced by Joyce in order to give classical shadows of $(-1)$-shifted symplectic derived schemes. In this paper, we discuss birational geometry for d-critical loci, by introducing notions such as `d-critical flips', `d-critical flops', etc. They are not birational maps of the underlying spaces, but rather should be understood as virtual birational maps. We show that several wall-crossing phenomena of moduli spaces of stable objects on Calabi-Yau 3-folds are described in terms of d-critical birational geometry. Among them, we show that wall-crossing diagrams of Pandharipande-Thomas (PT) stable pair moduli spaces, which are relevant in showing the rationality of PT generating series, form a d-critical minimal model program.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.