Francisco Odair de Paiva, Sandra Machado de Souza Lima, O. Miyagaki
{"title":"含磁势和变号权函数的薛定谔方程至少四个解的存在性","authors":"Francisco Odair de Paiva, Sandra Machado de Souza Lima, O. Miyagaki","doi":"10.58997/ejde.2023.47","DOIUrl":null,"url":null,"abstract":"We consider the elliptic problem $$ - \\Delta_A u + u = a_{\\lambda}(x) |u|^{q-2}u+b_{\\mu}(x) |u|^{p-2}u , $$ for \\(x \\in \\mathbb{R}^N\\), \\( 1 < q < 2 < p < 2^*= 2N/(N-2)\\), \\(a_{\\lambda}(x)\\) is a sign-changing weight function, \\(b_{\\mu}(x)\\) satisfies some additional conditions, \\(u \\in H^1_A(\\mathbb{R}^N)\\) and \\(A:\\mathbb{R}^N \\to \\mathbb{R}^N\\) is a magnetic potential. Exploring the Bahri-Li argument and some preliminary results we will discuss the existence of a four nontrivial solutions to the problem in question.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of at least four solutions for Schrodinger equations with magnetic potential involving and sign-changing weight function\",\"authors\":\"Francisco Odair de Paiva, Sandra Machado de Souza Lima, O. Miyagaki\",\"doi\":\"10.58997/ejde.2023.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the elliptic problem $$ - \\\\Delta_A u + u = a_{\\\\lambda}(x) |u|^{q-2}u+b_{\\\\mu}(x) |u|^{p-2}u , $$ for \\\\(x \\\\in \\\\mathbb{R}^N\\\\), \\\\( 1 < q < 2 < p < 2^*= 2N/(N-2)\\\\), \\\\(a_{\\\\lambda}(x)\\\\) is a sign-changing weight function, \\\\(b_{\\\\mu}(x)\\\\) satisfies some additional conditions, \\\\(u \\\\in H^1_A(\\\\mathbb{R}^N)\\\\) and \\\\(A:\\\\mathbb{R}^N \\\\to \\\\mathbb{R}^N\\\\) is a magnetic potential. Exploring the Bahri-Li argument and some preliminary results we will discuss the existence of a four nontrivial solutions to the problem in question.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of at least four solutions for Schrodinger equations with magnetic potential involving and sign-changing weight function
We consider the elliptic problem $$ - \Delta_A u + u = a_{\lambda}(x) |u|^{q-2}u+b_{\mu}(x) |u|^{p-2}u , $$ for \(x \in \mathbb{R}^N\), \( 1 < q < 2 < p < 2^*= 2N/(N-2)\), \(a_{\lambda}(x)\) is a sign-changing weight function, \(b_{\mu}(x)\) satisfies some additional conditions, \(u \in H^1_A(\mathbb{R}^N)\) and \(A:\mathbb{R}^N \to \mathbb{R}^N\) is a magnetic potential. Exploring the Bahri-Li argument and some preliminary results we will discuss the existence of a four nontrivial solutions to the problem in question.