Xiangzheng Qin, Yu Peng, Piaopiao Li, K. Cheng, Zhenzhong Wei, Ping Liu, Ning Cao, Junyi Huang, Jinjun Rao, Jinbo Chen, Tao Wang, Xiaomao Li, Mei Liu
{"title":"丝素蛋白与超长银纳米线基透明柔韧导电复合薄膜及其温敏电阻","authors":"Xiangzheng Qin, Yu Peng, Piaopiao Li, K. Cheng, Zhenzhong Wei, Ping Liu, Ning Cao, Junyi Huang, Jinjun Rao, Jinbo Chen, Tao Wang, Xiaomao Li, Mei Liu","doi":"10.1080/15599612.2019.1639002","DOIUrl":null,"url":null,"abstract":"Abstract A transparent, conductive, smooth, and temperature sensitive thin films was fabricated and characterized in this paper. Silk fibroin could be processed into transparent thin films, which can act as ideal opto-electronic substrates. As pure silk fibroin film is nonconductive, ultra-long silver nanowires coating and platinum sputtering were used to strengthen its conductivity. Ultra-long nanowires were used to reduce the junctions between wires, and platinum was to improve the conductivity of the film. The new nanowire-metal-organic composite film possesses excellent conductivity and good transmittance. The composite films containing different silver nanowires exhibit conductivities of as low as 6.9 Ω/sq, and transmittance of 60–80% in the visible light range. The films also showed potentials in practical applications as their resistance is almost linearly temperature-dependent. It also can transfer power to electrical devices. The new composite films could be expected to function in wearable electronics or implantable devices and sensors.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"13 1","pages":"41 - 50"},"PeriodicalIF":6.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2019.1639002","citationCount":"16","resultStr":"{\"title\":\"Silk fibroin and ultra-long silver nanowire based transparent, flexible and conductive composite film and its Temperature-Dependent resistance\",\"authors\":\"Xiangzheng Qin, Yu Peng, Piaopiao Li, K. Cheng, Zhenzhong Wei, Ping Liu, Ning Cao, Junyi Huang, Jinjun Rao, Jinbo Chen, Tao Wang, Xiaomao Li, Mei Liu\",\"doi\":\"10.1080/15599612.2019.1639002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A transparent, conductive, smooth, and temperature sensitive thin films was fabricated and characterized in this paper. Silk fibroin could be processed into transparent thin films, which can act as ideal opto-electronic substrates. As pure silk fibroin film is nonconductive, ultra-long silver nanowires coating and platinum sputtering were used to strengthen its conductivity. Ultra-long nanowires were used to reduce the junctions between wires, and platinum was to improve the conductivity of the film. The new nanowire-metal-organic composite film possesses excellent conductivity and good transmittance. The composite films containing different silver nanowires exhibit conductivities of as low as 6.9 Ω/sq, and transmittance of 60–80% in the visible light range. The films also showed potentials in practical applications as their resistance is almost linearly temperature-dependent. It also can transfer power to electrical devices. The new composite films could be expected to function in wearable electronics or implantable devices and sensors.\",\"PeriodicalId\":50296,\"journal\":{\"name\":\"International Journal of Optomechatronics\",\"volume\":\"13 1\",\"pages\":\"41 - 50\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15599612.2019.1639002\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optomechatronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15599612.2019.1639002\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2019.1639002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Silk fibroin and ultra-long silver nanowire based transparent, flexible and conductive composite film and its Temperature-Dependent resistance
Abstract A transparent, conductive, smooth, and temperature sensitive thin films was fabricated and characterized in this paper. Silk fibroin could be processed into transparent thin films, which can act as ideal opto-electronic substrates. As pure silk fibroin film is nonconductive, ultra-long silver nanowires coating and platinum sputtering were used to strengthen its conductivity. Ultra-long nanowires were used to reduce the junctions between wires, and platinum was to improve the conductivity of the film. The new nanowire-metal-organic composite film possesses excellent conductivity and good transmittance. The composite films containing different silver nanowires exhibit conductivities of as low as 6.9 Ω/sq, and transmittance of 60–80% in the visible light range. The films also showed potentials in practical applications as their resistance is almost linearly temperature-dependent. It also can transfer power to electrical devices. The new composite films could be expected to function in wearable electronics or implantable devices and sensors.
期刊介绍:
International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics.
Topics you can submit include, but are not limited to:
-Adaptive optics-
Optomechanics-
Machine vision, tracking and control-
Image-based micro-/nano- manipulation-
Control engineering for optomechatronics-
Optical metrology-
Optical sensors and light-based actuators-
Optomechatronics for astronomy and space applications-
Optical-based inspection and fault diagnosis-
Micro-/nano- optomechanical systems (MOEMS)-
Optofluidics-
Optical assembly and packaging-
Optical and vision-based manufacturing, processes, monitoring, and control-
Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)