关于𝔸1-chain连接组件构造迭代的备注

IF 0.5 Q3 MATHEMATICS
Chetan T. Balwe, B. Rani, Anand Sawant
{"title":"关于𝔸1-chain连接组件构造迭代的备注","authors":"Chetan T. Balwe, B. Rani, Anand Sawant","doi":"10.2140/akt.2022.7.385","DOIUrl":null,"url":null,"abstract":"We show that the sheaf of $\\mathbb A^1$-connected components of a Nisnevich sheaf of sets and its universal $\\mathbb A^1$-invariant quotient (obtained by iterating the $\\mathbb A^1$-chain connected components construction and taking the direct limit) agree on field-valued points. This establishes an explicit formula for the field-valued points of the sheaf of $\\mathbb A^1$-connected components of any space. Given any natural number $n$, we construct an $\\mathbb A^1$-connected space on which the iterations of the naive $\\mathbb A^1$-connected components construction do not stabilize before the $n$th stage.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remarks on iterations of the 𝔸1-chain connected\\ncomponents construction\",\"authors\":\"Chetan T. Balwe, B. Rani, Anand Sawant\",\"doi\":\"10.2140/akt.2022.7.385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the sheaf of $\\\\mathbb A^1$-connected components of a Nisnevich sheaf of sets and its universal $\\\\mathbb A^1$-invariant quotient (obtained by iterating the $\\\\mathbb A^1$-chain connected components construction and taking the direct limit) agree on field-valued points. This establishes an explicit formula for the field-valued points of the sheaf of $\\\\mathbb A^1$-connected components of any space. Given any natural number $n$, we construct an $\\\\mathbb A^1$-connected space on which the iterations of the naive $\\\\mathbb A^1$-connected components construction do not stabilize before the $n$th stage.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2022.7.385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2022.7.385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了Nisnevich集合的$\mathbb A^1$连通分量及其通称$\mathbb A^1$不变商(通过迭代$\mathbb A^1$链连通分量构造并取直接极限得到)在域值点上一致。这为任意空间的$\mathbb A^1$连通分量集的场值点建立了一个显式公式。给定任意自然数$n$,我们构造一个$\mathbb A^1$连通空间,在该空间上,$\mathbb A^1$连通分量构造的迭代在$n$阶之前不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on iterations of the 𝔸1-chain connected components construction
We show that the sheaf of $\mathbb A^1$-connected components of a Nisnevich sheaf of sets and its universal $\mathbb A^1$-invariant quotient (obtained by iterating the $\mathbb A^1$-chain connected components construction and taking the direct limit) agree on field-valued points. This establishes an explicit formula for the field-valued points of the sheaf of $\mathbb A^1$-connected components of any space. Given any natural number $n$, we construct an $\mathbb A^1$-connected space on which the iterations of the naive $\mathbb A^1$-connected components construction do not stabilize before the $n$th stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信