开发和使用机器学习模型自动转录230万个手写职业代码

Bjorn-Richard Pedersen, Einar J. Holsbø, Trygve Andersen, N. Shvetsov, J. Ravn, H. Sommerseth, L. A. Bongo
{"title":"开发和使用机器学习模型自动转录230万个手写职业代码","authors":"Bjorn-Richard Pedersen, Einar J. Holsbø, Trygve Andersen, N. Shvetsov, J. Ravn, H. Sommerseth, L. A. Bongo","doi":"10.51964/hlcs11331","DOIUrl":null,"url":null,"abstract":"Machine learning approaches achieve high accuracy for text recognition and are therefore increasingly used for the transcription of handwritten historical sources. However, using machine learning in production requires a streamlined end-to-end pipeline that scales to the dataset size and a model that achieves high accuracy with few manual transcriptions. The correctness of the model results must also be verified. This paper describes our lessons learned developing, tuning and using the Occode end-to-end machine learning pipeline for transcribing 2.3 million handwritten occupation codes from the Norwegian 1950 population census. We achieve an accuracy of 97% for the automatically transcribed codes, and we send 3% of the codes for manual verification . We verify that the occupation code distribution found in our results matches the distribution found in our training data, which should be representative for the census as a whole. We believe our approach and lessons learned may be useful for other transcription projects that plan to use machine learning in production. The source code is available at https://github.com/uit-hdl/rhd-codes.","PeriodicalId":73242,"journal":{"name":"Historical life course studies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Lessons Learned Developing and Using a Machine Learning Model to Automatically Transcribe 2.3 Million Handwritten Occupation Codes\",\"authors\":\"Bjorn-Richard Pedersen, Einar J. Holsbø, Trygve Andersen, N. Shvetsov, J. Ravn, H. Sommerseth, L. A. Bongo\",\"doi\":\"10.51964/hlcs11331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning approaches achieve high accuracy for text recognition and are therefore increasingly used for the transcription of handwritten historical sources. However, using machine learning in production requires a streamlined end-to-end pipeline that scales to the dataset size and a model that achieves high accuracy with few manual transcriptions. The correctness of the model results must also be verified. This paper describes our lessons learned developing, tuning and using the Occode end-to-end machine learning pipeline for transcribing 2.3 million handwritten occupation codes from the Norwegian 1950 population census. We achieve an accuracy of 97% for the automatically transcribed codes, and we send 3% of the codes for manual verification . We verify that the occupation code distribution found in our results matches the distribution found in our training data, which should be representative for the census as a whole. We believe our approach and lessons learned may be useful for other transcription projects that plan to use machine learning in production. The source code is available at https://github.com/uit-hdl/rhd-codes.\",\"PeriodicalId\":73242,\"journal\":{\"name\":\"Historical life course studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Historical life course studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51964/hlcs11331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Historical life course studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51964/hlcs11331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

机器学习方法实现了文本识别的高精度,因此越来越多地用于手写历史来源的转录。然而,在生产中使用机器学习需要一个精简的端到端管道,该管道可扩展到数据集大小,并且需要一个通过少量手动转录实现高精度的模型。模型结果的正确性也必须得到验证。本文描述了我们开发,调优和使用Occode端到端机器学习管道的经验教训,用于转录挪威1950年人口普查中的230万个手写职业代码。我们对自动转录的代码实现了97%的准确率,我们发送了3%的代码进行手动验证。我们验证在我们的结果中发现的职业代码分布与在我们的训练数据中发现的分布相匹配,这应该是人口普查作为一个整体的代表性。我们相信我们的方法和经验教训可能对计划在生产中使用机器学习的其他转录项目有用。源代码可从https://github.com/uit-hdl/rhd-codes获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lessons Learned Developing and Using a Machine Learning Model to Automatically Transcribe 2.3 Million Handwritten Occupation Codes
Machine learning approaches achieve high accuracy for text recognition and are therefore increasingly used for the transcription of handwritten historical sources. However, using machine learning in production requires a streamlined end-to-end pipeline that scales to the dataset size and a model that achieves high accuracy with few manual transcriptions. The correctness of the model results must also be verified. This paper describes our lessons learned developing, tuning and using the Occode end-to-end machine learning pipeline for transcribing 2.3 million handwritten occupation codes from the Norwegian 1950 population census. We achieve an accuracy of 97% for the automatically transcribed codes, and we send 3% of the codes for manual verification . We verify that the occupation code distribution found in our results matches the distribution found in our training data, which should be representative for the census as a whole. We believe our approach and lessons learned may be useful for other transcription projects that plan to use machine learning in production. The source code is available at https://github.com/uit-hdl/rhd-codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信