射影空间中的一般直线及koszul性质

Pub Date : 2022-03-17 DOI:10.1017/nmj.2022.42
J. Rice
{"title":"射影空间中的一般直线及koszul性质","authors":"J. Rice","doi":"10.1017/nmj.2022.42","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the Koszul property of the homogeneous coordinate ring of a generic collection of lines in \n$\\mathbb {P}^n$\n and the homogeneous coordinate ring of a collection of lines in general linear position in \n$\\mathbb {P}^n.$\n We show that if \n$\\mathcal {M}$\n is a collection of m lines in general linear position in \n$\\mathbb {P}^n$\n with \n$2m \\leq n+1$\n and R is the coordinate ring of \n$\\mathcal {M},$\n then R is Koszul. Furthermore, if \n$\\mathcal {M}$\n is a generic collection of m lines in \n$\\mathbb {P}^n$\n and R is the coordinate ring of \n$\\mathcal {M}$\n with m even and \n$m +1\\leq n$\n or m is odd and \n$m +2\\leq n,$\n then R is Koszul. Lastly, we show that if \n$\\mathcal {M}$\n is a generic collection of m lines such that \n$$ \\begin{align*} m> \\frac{1}{72}\\left(3(n^2+10n+13)+\\sqrt{3(n-1)^3(3n+5)}\\right),\\end{align*} $$\n then R is not Koszul. We give a complete characterization of the Koszul property of the coordinate ring of a generic collection of lines for \n$n \\leq 6$\n or \n$m \\leq 6$\n . We also determine the Castelnuovo–Mumford regularity of the coordinate ring for a generic collection of lines and the projective dimension of the coordinate ring of collection of lines in general linear position.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GENERIC LINES IN PROJECTIVE SPACE AND THE KOSZUL PROPERTY\",\"authors\":\"J. Rice\",\"doi\":\"10.1017/nmj.2022.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the Koszul property of the homogeneous coordinate ring of a generic collection of lines in \\n$\\\\mathbb {P}^n$\\n and the homogeneous coordinate ring of a collection of lines in general linear position in \\n$\\\\mathbb {P}^n.$\\n We show that if \\n$\\\\mathcal {M}$\\n is a collection of m lines in general linear position in \\n$\\\\mathbb {P}^n$\\n with \\n$2m \\\\leq n+1$\\n and R is the coordinate ring of \\n$\\\\mathcal {M},$\\n then R is Koszul. Furthermore, if \\n$\\\\mathcal {M}$\\n is a generic collection of m lines in \\n$\\\\mathbb {P}^n$\\n and R is the coordinate ring of \\n$\\\\mathcal {M}$\\n with m even and \\n$m +1\\\\leq n$\\n or m is odd and \\n$m +2\\\\leq n,$\\n then R is Koszul. Lastly, we show that if \\n$\\\\mathcal {M}$\\n is a generic collection of m lines such that \\n$$ \\\\begin{align*} m> \\\\frac{1}{72}\\\\left(3(n^2+10n+13)+\\\\sqrt{3(n-1)^3(3n+5)}\\\\right),\\\\end{align*} $$\\n then R is not Koszul. We give a complete characterization of the Koszul property of the coordinate ring of a generic collection of lines for \\n$n \\\\leq 6$\\n or \\n$m \\\\leq 6$\\n . We also determine the Castelnuovo–Mumford regularity of the coordinate ring for a generic collection of lines and the projective dimension of the coordinate ring of collection of lines in general linear position.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要在本文中,我们研究了$\mathbb{P}^n$中一个一般直线集合的齐次坐标环的Koszul性质和$\mathb{P〕^n$上一个一般线性位置的直线集合的齐次坐标环我们证明,如果$\mathcal{M}$是$\mathbb{P}^n$中一般线性位置的M条线的集合,其中$2m\leqn+1$,并且R是$\math cal{M}的坐标环,那么R是Koszul。此外,如果$\mathcal{M}$是$\mathbb{P}^n$中M行的泛型集合,并且R是$\math cal{M}$的坐标环,其中M为偶数,$M+1\leqn$或M为奇数,$M+2\leqn,$,则R为Koszul。最后,我们证明了如果$\mathcal{M}$是M行的泛型集合,使得$$\boot{align*}M>\frac{1}{72}\left(3(n^2+10n+13)+\sqrt{3(n-1)^3(3n+5)}\light),\end{align*}$$,则R不是Koszul。我们给出了$n\leq6$或$m\leq6$的一般线集合的坐标环的Koszul性质的一个完整刻画。我们还确定了一般直线集合的坐标环的Castelnuovo–Mumford正则性和一般线性位置的直线集合坐标环的投影维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
GENERIC LINES IN PROJECTIVE SPACE AND THE KOSZUL PROPERTY
Abstract In this paper, we study the Koszul property of the homogeneous coordinate ring of a generic collection of lines in $\mathbb {P}^n$ and the homogeneous coordinate ring of a collection of lines in general linear position in $\mathbb {P}^n.$ We show that if $\mathcal {M}$ is a collection of m lines in general linear position in $\mathbb {P}^n$ with $2m \leq n+1$ and R is the coordinate ring of $\mathcal {M},$ then R is Koszul. Furthermore, if $\mathcal {M}$ is a generic collection of m lines in $\mathbb {P}^n$ and R is the coordinate ring of $\mathcal {M}$ with m even and $m +1\leq n$ or m is odd and $m +2\leq n,$ then R is Koszul. Lastly, we show that if $\mathcal {M}$ is a generic collection of m lines such that $$ \begin{align*} m> \frac{1}{72}\left(3(n^2+10n+13)+\sqrt{3(n-1)^3(3n+5)}\right),\end{align*} $$ then R is not Koszul. We give a complete characterization of the Koszul property of the coordinate ring of a generic collection of lines for $n \leq 6$ or $m \leq 6$ . We also determine the Castelnuovo–Mumford regularity of the coordinate ring for a generic collection of lines and the projective dimension of the coordinate ring of collection of lines in general linear position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信