{"title":"非负矩阵和广义Fibonacci矩阵谱半径的界","authors":"Maria Adam, Aikaterini Aretaki","doi":"10.1515/spma-2022-0165","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we determine upper and lower bounds for the spectral radius of nonnegative matrices. Introducing the notion of average 4-row sum of a nonnegative matrix, we extend various existing formulas for spectral radius bounds. We also refer to their equality cases if the matrix is irreducible, and we present numerical examples to make comparisons among them. Finally, we provide an application to special matrices such as the generalized Fibonacci matrices, which are widely used in applied mathematics and computer science problems.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"10 1","pages":"308 - 326"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounds for the spectral radius of nonnegative matrices and generalized Fibonacci matrices\",\"authors\":\"Maria Adam, Aikaterini Aretaki\",\"doi\":\"10.1515/spma-2022-0165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we determine upper and lower bounds for the spectral radius of nonnegative matrices. Introducing the notion of average 4-row sum of a nonnegative matrix, we extend various existing formulas for spectral radius bounds. We also refer to their equality cases if the matrix is irreducible, and we present numerical examples to make comparisons among them. Finally, we provide an application to special matrices such as the generalized Fibonacci matrices, which are widely used in applied mathematics and computer science problems.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"10 1\",\"pages\":\"308 - 326\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2022-0165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bounds for the spectral radius of nonnegative matrices and generalized Fibonacci matrices
Abstract In this article, we determine upper and lower bounds for the spectral radius of nonnegative matrices. Introducing the notion of average 4-row sum of a nonnegative matrix, we extend various existing formulas for spectral radius bounds. We also refer to their equality cases if the matrix is irreducible, and we present numerical examples to make comparisons among them. Finally, we provide an application to special matrices such as the generalized Fibonacci matrices, which are widely used in applied mathematics and computer science problems.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.