扭曲的爱德华兹曲线在环上

Q4 Mathematics
Moha Ben Taleb El Hamam, A. Chillali, L. El Fadil
{"title":"扭曲的爱德华兹曲线在环上","authors":"Moha Ben Taleb El Hamam, A. Chillali, L. El Fadil","doi":"10.2478/tmmp-2023-0004","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝔽q be a finite field of q elements, where q is a power of an odd prime number. In this paper, we study the twisted Edwards curves denoted EEa,d over the local ring 𝔽q[e], where e2 = 0. In the first time, we study the arithmetic of the ring 𝔽q[e], e2 = 0. After that we define the twisted Edwards curves EEa,d over this ring and we give essential properties and we define the group EEa,d , these properties. Precisely, we give a bijection between the groups EEa,d and EEa,d0 × Fq,where EEa,d0 is the twisted Edwards curves over the finite field 𝔽q.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"83 1","pages":"43 - 50"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisted Edwards Curve Over the Ring\",\"authors\":\"Moha Ben Taleb El Hamam, A. Chillali, L. El Fadil\",\"doi\":\"10.2478/tmmp-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝔽q be a finite field of q elements, where q is a power of an odd prime number. In this paper, we study the twisted Edwards curves denoted EEa,d over the local ring 𝔽q[e], where e2 = 0. In the first time, we study the arithmetic of the ring 𝔽q[e], e2 = 0. After that we define the twisted Edwards curves EEa,d over this ring and we give essential properties and we define the group EEa,d , these properties. Precisely, we give a bijection between the groups EEa,d and EEa,d0 × Fq,where EEa,d0 is the twisted Edwards curves over the finite field 𝔽q.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"83 1\",\"pages\":\"43 - 50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

抽象Let𝔽q是q个元素的有限域,其中q是奇数素数的幂。在本文中,我们研究了局部环上表示为EEa,d的扭曲Edwards曲线𝔽q[e],其中e2=0。我们第一次研究了环的算术𝔽q[e],e2=0。然后我们定义了这个环上的扭曲Edwards曲线EEa,d,我们给出了本质性质,我们定义了群EEa,d,这些性质。精确地说,我们给出了群EEa,d和EEa,d0×Fq之间的双射,其中EEa,d0是有限域上扭曲的Edwards曲线𝔽q
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted Edwards Curve Over the Ring
Abstract Let 𝔽q be a finite field of q elements, where q is a power of an odd prime number. In this paper, we study the twisted Edwards curves denoted EEa,d over the local ring 𝔽q[e], where e2 = 0. In the first time, we study the arithmetic of the ring 𝔽q[e], e2 = 0. After that we define the twisted Edwards curves EEa,d over this ring and we give essential properties and we define the group EEa,d , these properties. Precisely, we give a bijection between the groups EEa,d and EEa,d0 × Fq,where EEa,d0 is the twisted Edwards curves over the finite field 𝔽q.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信