Md. Ebrahim Khalil Bhuiyan, Mohammad Mahmudur Rahman Khan, Iqbal Mahmud
{"title":"水基纳米流体:管流中温度分布的计算研究","authors":"Md. Ebrahim Khalil Bhuiyan, Mohammad Mahmudur Rahman Khan, Iqbal Mahmud","doi":"10.4236/ANP.2017.64012","DOIUrl":null,"url":null,"abstract":"Fluid containing nanometer-sized particles (i.e. nanoparticles) is known as nanofluid. Three different nanofluids flowing in a pipe with heat source at the inlet and sink in the walls are studied. The base fluid is water. 20 nm size nano-particle Al2O3 is mixed with base fluid with volume concentrations of 0.1%, 0.2% and 0.5%. Simulation is done using ANSYS Workbench 17.1. The result shows correlation between concentration of nanoparticle and temperature gradient at the outlet of the pipe.","PeriodicalId":71264,"journal":{"name":"纳米粒子(英文)","volume":"06 1","pages":"141-147"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Water Based Nanofluids: A Computational Study on Temperature Distribution in a Pipe Flow\",\"authors\":\"Md. Ebrahim Khalil Bhuiyan, Mohammad Mahmudur Rahman Khan, Iqbal Mahmud\",\"doi\":\"10.4236/ANP.2017.64012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluid containing nanometer-sized particles (i.e. nanoparticles) is known as nanofluid. Three different nanofluids flowing in a pipe with heat source at the inlet and sink in the walls are studied. The base fluid is water. 20 nm size nano-particle Al2O3 is mixed with base fluid with volume concentrations of 0.1%, 0.2% and 0.5%. Simulation is done using ANSYS Workbench 17.1. The result shows correlation between concentration of nanoparticle and temperature gradient at the outlet of the pipe.\",\"PeriodicalId\":71264,\"journal\":{\"name\":\"纳米粒子(英文)\",\"volume\":\"06 1\",\"pages\":\"141-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"纳米粒子(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ANP.2017.64012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米粒子(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ANP.2017.64012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Water Based Nanofluids: A Computational Study on Temperature Distribution in a Pipe Flow
Fluid containing nanometer-sized particles (i.e. nanoparticles) is known as nanofluid. Three different nanofluids flowing in a pipe with heat source at the inlet and sink in the walls are studied. The base fluid is water. 20 nm size nano-particle Al2O3 is mixed with base fluid with volume concentrations of 0.1%, 0.2% and 0.5%. Simulation is done using ANSYS Workbench 17.1. The result shows correlation between concentration of nanoparticle and temperature gradient at the outlet of the pipe.