光滑变种上局部系统模的Poisson几何

IF 1.1 2区 数学 Q1 MATHEMATICS
T. Pantev, B. Toen
{"title":"光滑变种上局部系统模的Poisson几何","authors":"T. Pantev, B. Toen","doi":"10.4171/prims/57-3-8","DOIUrl":null,"url":null,"abstract":"We study the moduli of G-local systems on smooth but not necessarily proper complex algebraic varieties. We show that, when suitably considered as derived algebraic stacks, they carry natural Poisson structures, generalizing the well known case of curves. We also construct symplectic leaves of this Poisson structure by fixing local monodromies at infinity, and show that a new feature, called strictness, appears as soon as the divisor at infinity has non-trivial crossings.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Poisson Geometry of the Moduli of Local Systems on Smooth Varieties\",\"authors\":\"T. Pantev, B. Toen\",\"doi\":\"10.4171/prims/57-3-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the moduli of G-local systems on smooth but not necessarily proper complex algebraic varieties. We show that, when suitably considered as derived algebraic stacks, they carry natural Poisson structures, generalizing the well known case of curves. We also construct symplectic leaves of this Poisson structure by fixing local monodromies at infinity, and show that a new feature, called strictness, appears as soon as the divisor at infinity has non-trivial crossings.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/57-3-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/57-3-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

我们研究了G-局部系统在光滑但不一定正确的复代数变体上的模。我们证明,当适当地被视为导出代数堆栈时,它们具有自然泊松结构,推广了曲线的已知情况。我们还通过固定无穷远处的局部单调来构造这种泊松结构的辛叶,并证明了只要无穷远处的除数有非平凡的交叉,就会出现一个新的特征,称为严格性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poisson Geometry of the Moduli of Local Systems on Smooth Varieties
We study the moduli of G-local systems on smooth but not necessarily proper complex algebraic varieties. We show that, when suitably considered as derived algebraic stacks, they carry natural Poisson structures, generalizing the well known case of curves. We also construct symplectic leaves of this Poisson structure by fixing local monodromies at infinity, and show that a new feature, called strictness, appears as soon as the divisor at infinity has non-trivial crossings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信