{"title":"光滑变种上局部系统模的Poisson几何","authors":"T. Pantev, B. Toen","doi":"10.4171/prims/57-3-8","DOIUrl":null,"url":null,"abstract":"We study the moduli of G-local systems on smooth but not necessarily proper complex algebraic varieties. We show that, when suitably considered as derived algebraic stacks, they carry natural Poisson structures, generalizing the well known case of curves. We also construct symplectic leaves of this Poisson structure by fixing local monodromies at infinity, and show that a new feature, called strictness, appears as soon as the divisor at infinity has non-trivial crossings.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Poisson Geometry of the Moduli of Local Systems on Smooth Varieties\",\"authors\":\"T. Pantev, B. Toen\",\"doi\":\"10.4171/prims/57-3-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the moduli of G-local systems on smooth but not necessarily proper complex algebraic varieties. We show that, when suitably considered as derived algebraic stacks, they carry natural Poisson structures, generalizing the well known case of curves. We also construct symplectic leaves of this Poisson structure by fixing local monodromies at infinity, and show that a new feature, called strictness, appears as soon as the divisor at infinity has non-trivial crossings.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/57-3-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/57-3-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Poisson Geometry of the Moduli of Local Systems on Smooth Varieties
We study the moduli of G-local systems on smooth but not necessarily proper complex algebraic varieties. We show that, when suitably considered as derived algebraic stacks, they carry natural Poisson structures, generalizing the well known case of curves. We also construct symplectic leaves of this Poisson structure by fixing local monodromies at infinity, and show that a new feature, called strictness, appears as soon as the divisor at infinity has non-trivial crossings.
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.