{"title":"从Kontsevich不变量得到Milnor-Orr不变量","authors":"Takefumi Nosaka","doi":"10.4171/prims/56-1-7","DOIUrl":null,"url":null,"abstract":"As nilpotent studies in knot theory, we focus on invariants of Milnor, Orr, and Kontsevich. We show that the Orr invariant of degree $ k $ is equivalent to the tree reduction of the Kontsevich invariant of degree $< 2k $. Furthermore, we will see a close relation between the Orr invariant and the Milnor invariant, and discuss a method of computing these invariants","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/prims/56-1-7","citationCount":"1","resultStr":"{\"title\":\"Milnor–Orr Invariants from the Kontsevich Invariant\",\"authors\":\"Takefumi Nosaka\",\"doi\":\"10.4171/prims/56-1-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As nilpotent studies in knot theory, we focus on invariants of Milnor, Orr, and Kontsevich. We show that the Orr invariant of degree $ k $ is equivalent to the tree reduction of the Kontsevich invariant of degree $< 2k $. Furthermore, we will see a close relation between the Orr invariant and the Milnor invariant, and discuss a method of computing these invariants\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/prims/56-1-7\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/56-1-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/56-1-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Milnor–Orr Invariants from the Kontsevich Invariant
As nilpotent studies in knot theory, we focus on invariants of Milnor, Orr, and Kontsevich. We show that the Orr invariant of degree $ k $ is equivalent to the tree reduction of the Kontsevich invariant of degree $< 2k $. Furthermore, we will see a close relation between the Orr invariant and the Milnor invariant, and discuss a method of computing these invariants
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.