从Kontsevich不变量得到Milnor-Orr不变量

IF 1.1 2区 数学 Q1 MATHEMATICS
Takefumi Nosaka
{"title":"从Kontsevich不变量得到Milnor-Orr不变量","authors":"Takefumi Nosaka","doi":"10.4171/prims/56-1-7","DOIUrl":null,"url":null,"abstract":"As nilpotent studies in knot theory, we focus on invariants of Milnor, Orr, and Kontsevich. We show that the Orr invariant of degree $ k $ is equivalent to the tree reduction of the Kontsevich invariant of degree $< 2k $. Furthermore, we will see a close relation between the Orr invariant and the Milnor invariant, and discuss a method of computing these invariants","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/prims/56-1-7","citationCount":"1","resultStr":"{\"title\":\"Milnor–Orr Invariants from the Kontsevich Invariant\",\"authors\":\"Takefumi Nosaka\",\"doi\":\"10.4171/prims/56-1-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As nilpotent studies in knot theory, we focus on invariants of Milnor, Orr, and Kontsevich. We show that the Orr invariant of degree $ k $ is equivalent to the tree reduction of the Kontsevich invariant of degree $< 2k $. Furthermore, we will see a close relation between the Orr invariant and the Milnor invariant, and discuss a method of computing these invariants\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/prims/56-1-7\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/56-1-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/56-1-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

作为纽结理论中的幂零性研究,我们主要研究Milnor、Orr和Kontsevich的不变量。我们证明了阶$k$的Orr不变量等价于阶$<2k$的Kontsevich不变量的树约简。此外,我们将看到Orr不变量和Milnor不变量之间的密切关系,并讨论计算这些不变量的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Milnor–Orr Invariants from the Kontsevich Invariant
As nilpotent studies in knot theory, we focus on invariants of Milnor, Orr, and Kontsevich. We show that the Orr invariant of degree $ k $ is equivalent to the tree reduction of the Kontsevich invariant of degree $< 2k $. Furthermore, we will see a close relation between the Orr invariant and the Milnor invariant, and discuss a method of computing these invariants
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信