{"title":"Deligne–Illusie同构的晶体解释","authors":"C. Huyghe, N. Wach","doi":"10.5802/aif.3545","DOIUrl":null,"url":null,"abstract":"Abstract : let k be a finite field of characteristic p>0, W(k) the ring of Witt vectors of k,\r\n X a smooth scheme over \\spec W(k) and X_0 the special fiber of X.\r\nIn 1987, Deligne and Illusie proved the degeneration of the spectral\r\nsequence ``de Hodge vers de Rham'' in a purely algebraic way, by constructing a\r\nquasi-isomorphism at the level of derived categories between the de Rham complex of X_0\r\n with a complex with 0 differentials. Simultaneously Fontaine and Messing\r\nconstructed a divided Frobenius map on the crystalline complexes associated with X_0. We show that both\r\nmorphisms of derived categories are compatible mod p>0 if the dimension of X_0 is <p-1.\r\nWe use this compatibility to compute the filtered phi-module mod\\,p associated to the Drinfeld Curve.\r\n\r\nResume: Soit k un corps fini de caracteristique p>0, W(k) l'anneau des vecteurs de Witt de k, X un schema lisse sur \r\nspec W(k), X_0 la fibre speciale de X.\r\n En 1987, Deligne et Illusie ont demontre la degenerescence de la suite\r\nspectrale de Hodge vers de Rham d'une facon purement algebrique, en construisant\r\nun quasi-isomorphisme dans la categorie derivee entre le complexe de de Rham de X_0\r\n et un complexe a differentielles nulles. Concomitamment, Fontaine et Messing ont construit un Frobenius divise sur les complexes cristallins\r\nassocies a X_0. Nous montrons que ces deux morphismes de categories derivees sont compatibles. Comme application de cette compatibilite, nous donnons la structure du phi-module filtre mod p associe a la courbe de Drinfeld.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interprétation cristalline de l’isomorphisme de Deligne–Illusie\",\"authors\":\"C. Huyghe, N. Wach\",\"doi\":\"10.5802/aif.3545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract : let k be a finite field of characteristic p>0, W(k) the ring of Witt vectors of k,\\r\\n X a smooth scheme over \\\\spec W(k) and X_0 the special fiber of X.\\r\\nIn 1987, Deligne and Illusie proved the degeneration of the spectral\\r\\nsequence ``de Hodge vers de Rham'' in a purely algebraic way, by constructing a\\r\\nquasi-isomorphism at the level of derived categories between the de Rham complex of X_0\\r\\n with a complex with 0 differentials. Simultaneously Fontaine and Messing\\r\\nconstructed a divided Frobenius map on the crystalline complexes associated with X_0. We show that both\\r\\nmorphisms of derived categories are compatible mod p>0 if the dimension of X_0 is <p-1.\\r\\nWe use this compatibility to compute the filtered phi-module mod\\\\,p associated to the Drinfeld Curve.\\r\\n\\r\\nResume: Soit k un corps fini de caracteristique p>0, W(k) l'anneau des vecteurs de Witt de k, X un schema lisse sur \\r\\nspec W(k), X_0 la fibre speciale de X.\\r\\n En 1987, Deligne et Illusie ont demontre la degenerescence de la suite\\r\\nspectrale de Hodge vers de Rham d'une facon purement algebrique, en construisant\\r\\nun quasi-isomorphisme dans la categorie derivee entre le complexe de de Rham de X_0\\r\\n et un complexe a differentielles nulles. Concomitamment, Fontaine et Messing ont construit un Frobenius divise sur les complexes cristallins\\r\\nassocies a X_0. Nous montrons que ces deux morphismes de categories derivees sont compatibles. Comme application de cette compatibilite, nous donnons la structure du phi-module filtre mod p associe a la courbe de Drinfeld.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
文摘:让k的有限域特征p > 0, W (k) k的威特向量环,X平稳计划/规范\ W (k)和X_0 X.In 1987的特殊纤维,Deligne的变性和Illusie spectralsequence“德·霍奇更de Rham”在一个纯粹代数方法,通过构造aquasi-isomorphism的派生类从德Rham复杂之间的差异与一个复杂的0。同时,Fontaine和messinge在与X_0相关的晶体配合物上构造了一个分裂的Frobenius图。我们表明bothmorphisms派生类别是兼容的mod p > 0如果X_0的维数为0,W (k) l 'anneau des为了德威特·德·k, X联合国模式lisse苏尔规范W (k),从拉纤维speciale de X En 1987 Deligne et Illusie位于安大略省demontre la degenerescence de la suitespectrale de霍奇更de Rham这样一个purement algebrique, En construisantun quasi-isomorphisme在categorie derivee之间le complexe de de Rham de X_0等联合国complexe differentielles null。承诺,Fontaine和Messing构建了Frobenius划分的复杂的晶体,在x0的结合部。Nous montrons que ces deux morphismes de categories派生出soncompatibles。Comme应用程序的数据兼容,现在的donons,结构的phili -模块过滤模型的关联,一个courbe de Drinfeld。
Interprétation cristalline de l’isomorphisme de Deligne–Illusie
Abstract : let k be a finite field of characteristic p>0, W(k) the ring of Witt vectors of k,
X a smooth scheme over \spec W(k) and X_0 the special fiber of X.
In 1987, Deligne and Illusie proved the degeneration of the spectral
sequence ``de Hodge vers de Rham'' in a purely algebraic way, by constructing a
quasi-isomorphism at the level of derived categories between the de Rham complex of X_0
with a complex with 0 differentials. Simultaneously Fontaine and Messing
constructed a divided Frobenius map on the crystalline complexes associated with X_0. We show that both
morphisms of derived categories are compatible mod p>0 if the dimension of X_0 is 0, W(k) l'anneau des vecteurs de Witt de k, X un schema lisse sur
spec W(k), X_0 la fibre speciale de X.
En 1987, Deligne et Illusie ont demontre la degenerescence de la suite
spectrale de Hodge vers de Rham d'une facon purement algebrique, en construisant
un quasi-isomorphisme dans la categorie derivee entre le complexe de de Rham de X_0
et un complexe a differentielles nulles. Concomitamment, Fontaine et Messing ont construit un Frobenius divise sur les complexes cristallins
associes a X_0. Nous montrons que ces deux morphismes de categories derivees sont compatibles. Comme application de cette compatibilite, nous donnons la structure du phi-module filtre mod p associe a la courbe de Drinfeld.