关于拉普拉斯方程的调和Bergman核权和极小解

IF 0.4 Q4 MATHEMATICS
T. Ł. Żynda
{"title":"关于拉普拉斯方程的调和Bergman核权和极小解","authors":"T. Ł. Żynda","doi":"10.2478/amsil-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we consider spaces of weight square-integrable and harmonic functions L2H(Ω, µ). Weights µ for which there exists reproducing kernel of L2H(Ω, µ) are named ’admissible weights’ and such kernels are named ’harmonic Bergman kernels’. We prove that if only weight of integration is integrable in some negative power, then it is admissible. Next we construct a weight µ on the unit circle which is non-admissible and using Bell-Ligocka theorem we show that such weights exist for a large class of domains in ℝ2. Later we conclude from the classical result of reproducing kernel Hilbert spaces theory that if the set {f ∈ L2H(Ω, µ)|f(z) = c} for admissible weight µ is non-empty, then there is exactly one element with minimal norm. Such an element in this paper is called ’a minimal (z, c)-solution in weight µ of Laplace’s equation on Ω’ and upper estimates for it are given.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"36 1","pages":"238 - 252"},"PeriodicalIF":0.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Weights Which Admit Harmonic Bergman Kernel and Minimal Solutions of Laplace’s Equation\",\"authors\":\"T. Ł. Żynda\",\"doi\":\"10.2478/amsil-2022-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we consider spaces of weight square-integrable and harmonic functions L2H(Ω, µ). Weights µ for which there exists reproducing kernel of L2H(Ω, µ) are named ’admissible weights’ and such kernels are named ’harmonic Bergman kernels’. We prove that if only weight of integration is integrable in some negative power, then it is admissible. Next we construct a weight µ on the unit circle which is non-admissible and using Bell-Ligocka theorem we show that such weights exist for a large class of domains in ℝ2. Later we conclude from the classical result of reproducing kernel Hilbert spaces theory that if the set {f ∈ L2H(Ω, µ)|f(z) = c} for admissible weight µ is non-empty, then there is exactly one element with minimal norm. Such an element in this paper is called ’a minimal (z, c)-solution in weight µ of Laplace’s equation on Ω’ and upper estimates for it are given.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"36 1\",\"pages\":\"238 - 252\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2022-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文考虑权平方可积空间和调和函数L2H(Ω,µ)。存在L2H(Ω,µ)的再生核的权重µ称为“容许权重”,这种核称为“调和Bergman核”。我们证明了若积分的权在某个负幂上是可积的,则它是可容许的。接下来,我们在单位圆上构造了一个不可容许的权重µ,并使用Bell-Ligocka定理证明了这种权重存在于ℝ2.后来我们从再生核Hilbert空间理论的经典结果得出结论,如果容许权µ的集合{f∈L2H(Ω,µ)|f(z)=c}是非空的,则恰好存在一个具有最小范数的元素。本文中的这种元素被称为“Ω上拉普拉斯方程的权µ的最小(z,c)-解”,并给出了它的上估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Weights Which Admit Harmonic Bergman Kernel and Minimal Solutions of Laplace’s Equation
Abstract In this paper we consider spaces of weight square-integrable and harmonic functions L2H(Ω, µ). Weights µ for which there exists reproducing kernel of L2H(Ω, µ) are named ’admissible weights’ and such kernels are named ’harmonic Bergman kernels’. We prove that if only weight of integration is integrable in some negative power, then it is admissible. Next we construct a weight µ on the unit circle which is non-admissible and using Bell-Ligocka theorem we show that such weights exist for a large class of domains in ℝ2. Later we conclude from the classical result of reproducing kernel Hilbert spaces theory that if the set {f ∈ L2H(Ω, µ)|f(z) = c} for admissible weight µ is non-empty, then there is exactly one element with minimal norm. Such an element in this paper is called ’a minimal (z, c)-solution in weight µ of Laplace’s equation on Ω’ and upper estimates for it are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信