Navdeep Godara, C. Williamson, Daewon Koo, S. Askew
{"title":"除草剂对白三叶草(Trifolium repens L.)侵染草坪传粉者觅食行为和花形态的影响","authors":"Navdeep Godara, C. Williamson, Daewon Koo, S. Askew","doi":"10.1017/wet.2023.33","DOIUrl":null,"url":null,"abstract":"Abstract The recent decline in pollinator abundance is a cause of concern for sustaining global food production. Several common weeds of managed turfgrass systems attract honeybees and other wild pollinators. As turfgrass often requires treatment with insecticides that harm bees, best practices are needed to prevent bees from visiting weed-infested turf areas that will be treated for insect pests. Weed control tactics can protect pollinator exposure to insecticides by reducing the floral resources afforded to bees from turfgrass weeds. Three field studies were conducted in 2021 and 2022 to evaluate the effect of various herbicides and herbicide formulation constituents on pollinator foraging and white clover floral morphology in managed tall fescue turfgrass. Treatments included a nontreated control; MCPP; 2,4-D; dicamba; Trimec Classic™ (2,4-D, MCPP, dicamba); Speedzone™ (carfentrazone, 2,4-D, MCPP, dicamba); and an herbicide-formulation constituent (inert ingredients of Speedzone™). All response variables were evaluated for 8 d, starting from one day before treatment and ending 6 d after treatment (DAT). The herbicide formulation constituent did not alter white clover flower density, floral discoloration, floral quality, or insect visitation compared to nontreated plots. Herbicides reduced flower density and floral quality to the same extent, but MCPP discolored white clover floral tissue 16% per day and less than all other herbicides except dicamba. Floral quality completely declined in approximately 5 d following any herbicide treatment. Bee visitation to white clover–infested turf increased by 3 bees min–1 for every 100 white clover blooms m–2. Honeybees and other insects vacated herbicide-treated areas in less than 2 d, despite minimal effects on floral quality and density at that time. The data suggest that practitioners could apply insecticides 2 d after auxin herbicide treatment and avoid harm to pollinators, but additional work is needed to directly measure pollinator exposure following such treatments. Nomenclature: Carfentrazone; dicamba; MCPP; 2,4-D; white clover, Trifolium repens L.; tall fescue, Festuca arundinacea; honeybee, Apis mellifera L.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":"37 1","pages":"221 - 225"},"PeriodicalIF":1.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of herbicides on pollinator foraging behavior and flower morphology in white clover (Trifolium repens L.)–infested turfgrass\",\"authors\":\"Navdeep Godara, C. Williamson, Daewon Koo, S. Askew\",\"doi\":\"10.1017/wet.2023.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The recent decline in pollinator abundance is a cause of concern for sustaining global food production. Several common weeds of managed turfgrass systems attract honeybees and other wild pollinators. As turfgrass often requires treatment with insecticides that harm bees, best practices are needed to prevent bees from visiting weed-infested turf areas that will be treated for insect pests. Weed control tactics can protect pollinator exposure to insecticides by reducing the floral resources afforded to bees from turfgrass weeds. Three field studies were conducted in 2021 and 2022 to evaluate the effect of various herbicides and herbicide formulation constituents on pollinator foraging and white clover floral morphology in managed tall fescue turfgrass. Treatments included a nontreated control; MCPP; 2,4-D; dicamba; Trimec Classic™ (2,4-D, MCPP, dicamba); Speedzone™ (carfentrazone, 2,4-D, MCPP, dicamba); and an herbicide-formulation constituent (inert ingredients of Speedzone™). All response variables were evaluated for 8 d, starting from one day before treatment and ending 6 d after treatment (DAT). The herbicide formulation constituent did not alter white clover flower density, floral discoloration, floral quality, or insect visitation compared to nontreated plots. Herbicides reduced flower density and floral quality to the same extent, but MCPP discolored white clover floral tissue 16% per day and less than all other herbicides except dicamba. Floral quality completely declined in approximately 5 d following any herbicide treatment. Bee visitation to white clover–infested turf increased by 3 bees min–1 for every 100 white clover blooms m–2. Honeybees and other insects vacated herbicide-treated areas in less than 2 d, despite minimal effects on floral quality and density at that time. The data suggest that practitioners could apply insecticides 2 d after auxin herbicide treatment and avoid harm to pollinators, but additional work is needed to directly measure pollinator exposure following such treatments. Nomenclature: Carfentrazone; dicamba; MCPP; 2,4-D; white clover, Trifolium repens L.; tall fescue, Festuca arundinacea; honeybee, Apis mellifera L.\",\"PeriodicalId\":23710,\"journal\":{\"name\":\"Weed Technology\",\"volume\":\"37 1\",\"pages\":\"221 - 225\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/wet.2023.33\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wet.2023.33","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Effect of herbicides on pollinator foraging behavior and flower morphology in white clover (Trifolium repens L.)–infested turfgrass
Abstract The recent decline in pollinator abundance is a cause of concern for sustaining global food production. Several common weeds of managed turfgrass systems attract honeybees and other wild pollinators. As turfgrass often requires treatment with insecticides that harm bees, best practices are needed to prevent bees from visiting weed-infested turf areas that will be treated for insect pests. Weed control tactics can protect pollinator exposure to insecticides by reducing the floral resources afforded to bees from turfgrass weeds. Three field studies were conducted in 2021 and 2022 to evaluate the effect of various herbicides and herbicide formulation constituents on pollinator foraging and white clover floral morphology in managed tall fescue turfgrass. Treatments included a nontreated control; MCPP; 2,4-D; dicamba; Trimec Classic™ (2,4-D, MCPP, dicamba); Speedzone™ (carfentrazone, 2,4-D, MCPP, dicamba); and an herbicide-formulation constituent (inert ingredients of Speedzone™). All response variables were evaluated for 8 d, starting from one day before treatment and ending 6 d after treatment (DAT). The herbicide formulation constituent did not alter white clover flower density, floral discoloration, floral quality, or insect visitation compared to nontreated plots. Herbicides reduced flower density and floral quality to the same extent, but MCPP discolored white clover floral tissue 16% per day and less than all other herbicides except dicamba. Floral quality completely declined in approximately 5 d following any herbicide treatment. Bee visitation to white clover–infested turf increased by 3 bees min–1 for every 100 white clover blooms m–2. Honeybees and other insects vacated herbicide-treated areas in less than 2 d, despite minimal effects on floral quality and density at that time. The data suggest that practitioners could apply insecticides 2 d after auxin herbicide treatment and avoid harm to pollinators, but additional work is needed to directly measure pollinator exposure following such treatments. Nomenclature: Carfentrazone; dicamba; MCPP; 2,4-D; white clover, Trifolium repens L.; tall fescue, Festuca arundinacea; honeybee, Apis mellifera L.
期刊介绍:
Weed Technology publishes original research and scholarship in the form of peer-reviewed articles focused on understanding how weeds are managed.
The journal focuses on:
- Applied aspects concerning the management of weeds in agricultural systems
- Herbicides used to manage undesired vegetation, weed biology and control
- Weed/crop management systems
- Reports of new weed problems
-New technologies for weed management and special articles emphasizing technology transfer to improve weed control
-Articles dealing with plant growth regulators and management of undesired plant growth may also be accepted, provided there is clear relevance to weed science technology, e.g., turfgrass or woody plant management along rights-of-way, vegetation management in forest, aquatic, or other non-crop situations.
-Surveys, education, and extension topics related to weeds will also be considered