一类非线性中立型波动方程的指数镇定

IF 0.4 Q4 MATHEMATICS
A. Kelleche, A. Berkani
{"title":"一类非线性中立型波动方程的指数镇定","authors":"A. Kelleche, A. Berkani","doi":"10.5269/bspm.52132","DOIUrl":null,"url":null,"abstract":"This work aims to study a nonlinear wave equation subject to a delay of neutral type. The nonlinearity and the delay appear in the second time derivative. In spite of the fact that delays by nature, have an instability effect on the structures, the strong damping is sufficient to allow the system to reach its equilibrium state with an exponential manner. The difficulties arising from the nonlinearity have been overcome by using an inequality due to a Sobolev embedding theorem. The main result has been established without any condition on the coefficient of the neutral delay.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On exponential stabilization of a nonlinear neutral wave equation\",\"authors\":\"A. Kelleche, A. Berkani\",\"doi\":\"10.5269/bspm.52132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to study a nonlinear wave equation subject to a delay of neutral type. The nonlinearity and the delay appear in the second time derivative. In spite of the fact that delays by nature, have an instability effect on the structures, the strong damping is sufficient to allow the system to reach its equilibrium state with an exponential manner. The difficulties arising from the nonlinearity have been overcome by using an inequality due to a Sobolev embedding theorem. The main result has been established without any condition on the coefficient of the neutral delay.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.52132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有中立型时滞的非线性波动方程。非线性和延迟出现在二阶时间导数中。尽管延迟本质上对结构有不稳定影响,但强阻尼足以使系统以指数方式达到平衡状态。由于Sobolev嵌入定理,通过使用不等式克服了由非线性引起的困难。主要结果是在没有任何中性延迟系数条件下建立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On exponential stabilization of a nonlinear neutral wave equation
This work aims to study a nonlinear wave equation subject to a delay of neutral type. The nonlinearity and the delay appear in the second time derivative. In spite of the fact that delays by nature, have an instability effect on the structures, the strong damping is sufficient to allow the system to reach its equilibrium state with an exponential manner. The difficulties arising from the nonlinearity have been overcome by using an inequality due to a Sobolev embedding theorem. The main result has been established without any condition on the coefficient of the neutral delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信