一个半参数倾斜最优模型

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2022-12-22 DOI:10.3390/stats6010001
Chathurangi H. Pathiravasan, B. Bhattacharya
{"title":"一个半参数倾斜最优模型","authors":"Chathurangi H. Pathiravasan, B. Bhattacharya","doi":"10.3390/stats6010001","DOIUrl":null,"url":null,"abstract":"Practitioners often face the situation of comparing any set of k distributions, which may follow neither normality nor equality of variances. We propose a semiparametric model to compare those distributions using an exponential tilt method. This extends the classical analysis of variance models when all distributions are unknown by relaxing its assumptions. The proposed model is optimal when one of the distributions is known. Large-sample estimates of the model parameters are derived, and the hypotheses for the equality of the distributions are tested for one-at-a-time and simultaneous comparison cases. Real data examples from NASA meteorology experiments and social credit card limits are analyzed to illustrate our approach. The proposed approach is shown to be preferable in a simulated power comparison with existing parametric and nonparametric methods.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Semiparametric Tilt Optimality Model\",\"authors\":\"Chathurangi H. Pathiravasan, B. Bhattacharya\",\"doi\":\"10.3390/stats6010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Practitioners often face the situation of comparing any set of k distributions, which may follow neither normality nor equality of variances. We propose a semiparametric model to compare those distributions using an exponential tilt method. This extends the classical analysis of variance models when all distributions are unknown by relaxing its assumptions. The proposed model is optimal when one of the distributions is known. Large-sample estimates of the model parameters are derived, and the hypotheses for the equality of the distributions are tested for one-at-a-time and simultaneous comparison cases. Real data examples from NASA meteorology experiments and social credit card limits are analyzed to illustrate our approach. The proposed approach is shown to be preferable in a simulated power comparison with existing parametric and nonparametric methods.\",\"PeriodicalId\":93142,\"journal\":{\"name\":\"Stats\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stats\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats6010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

从业者经常面临比较任何一组k分布的情况,这些分布既不遵循正态性,也不遵循方差相等。我们提出了一个半参数模型来使用指数倾斜方法比较这些分布。当所有分布都未知时,这通过放松其假设扩展了方差模型的经典分析。当其中一个分布已知时,所提出的模型是最优的。导出了模型参数的大样本估计,并在一次一个和同时比较的情况下检验了分布相等的假设。分析了美国国家航空航天局气象实验和社会信用卡限额的真实数据示例,以说明我们的方法。与现有的参数和非参数方法相比,所提出的方法在模拟功率比较中是优选的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Semiparametric Tilt Optimality Model
Practitioners often face the situation of comparing any set of k distributions, which may follow neither normality nor equality of variances. We propose a semiparametric model to compare those distributions using an exponential tilt method. This extends the classical analysis of variance models when all distributions are unknown by relaxing its assumptions. The proposed model is optimal when one of the distributions is known. Large-sample estimates of the model parameters are derived, and the hypotheses for the equality of the distributions are tested for one-at-a-time and simultaneous comparison cases. Real data examples from NASA meteorology experiments and social credit card limits are analyzed to illustrate our approach. The proposed approach is shown to be preferable in a simulated power comparison with existing parametric and nonparametric methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信