{"title":"半参数模型中两步m估计的平均估计量","authors":"Ruoyao Shi","doi":"10.1017/s0266466622000548","DOIUrl":null,"url":null,"abstract":"In a two-step extremum estimation (M-estimation) framework with a finite-dimensional parameter of interest and a potentially infinite-dimensional first-step nuisance parameter, this paper proposes an averaging estimator that combines a semiparametric estimator based on a nonparametric first step and a parametric estimator which imposes parametric restrictions on the first step. The averaging weight is an easy-to-compute sample analog of an infeasible optimal weight that minimizes the asymptotic quadratic risk. Under Stein-type conditions, the asymptotic lower bound of the truncated quadratic risk difference between the averaging estimator and the semiparametric estimator is strictly less than zero for a class of data generating processes that includes both correct specification and varied degrees of misspecification of the parametric restrictions, and the asymptotic upper bound is weakly less than zero. The averaging estimator, along with an easy-to-implement inference method, is demonstrated in an example.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN AVERAGING ESTIMATOR FOR TWO-STEP M-ESTIMATION IN SEMIPARAMETRIC MODELS\",\"authors\":\"Ruoyao Shi\",\"doi\":\"10.1017/s0266466622000548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a two-step extremum estimation (M-estimation) framework with a finite-dimensional parameter of interest and a potentially infinite-dimensional first-step nuisance parameter, this paper proposes an averaging estimator that combines a semiparametric estimator based on a nonparametric first step and a parametric estimator which imposes parametric restrictions on the first step. The averaging weight is an easy-to-compute sample analog of an infeasible optimal weight that minimizes the asymptotic quadratic risk. Under Stein-type conditions, the asymptotic lower bound of the truncated quadratic risk difference between the averaging estimator and the semiparametric estimator is strictly less than zero for a class of data generating processes that includes both correct specification and varied degrees of misspecification of the parametric restrictions, and the asymptotic upper bound is weakly less than zero. The averaging estimator, along with an easy-to-implement inference method, is demonstrated in an example.\",\"PeriodicalId\":49275,\"journal\":{\"name\":\"Econometric Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Theory\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/s0266466622000548\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s0266466622000548","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
AN AVERAGING ESTIMATOR FOR TWO-STEP M-ESTIMATION IN SEMIPARAMETRIC MODELS
In a two-step extremum estimation (M-estimation) framework with a finite-dimensional parameter of interest and a potentially infinite-dimensional first-step nuisance parameter, this paper proposes an averaging estimator that combines a semiparametric estimator based on a nonparametric first step and a parametric estimator which imposes parametric restrictions on the first step. The averaging weight is an easy-to-compute sample analog of an infeasible optimal weight that minimizes the asymptotic quadratic risk. Under Stein-type conditions, the asymptotic lower bound of the truncated quadratic risk difference between the averaging estimator and the semiparametric estimator is strictly less than zero for a class of data generating processes that includes both correct specification and varied degrees of misspecification of the parametric restrictions, and the asymptotic upper bound is weakly less than zero. The averaging estimator, along with an easy-to-implement inference method, is demonstrated in an example.
Econometric TheoryMATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍:
Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.