{"title":"具有密度抑制运动和营养消耗的趋化系统的整体存在性、均匀有界性和稳定性","authors":"Jie Jiang, P. Laurençot, Yanyan Zhang","doi":"10.1080/03605302.2021.2021422","DOIUrl":null,"url":null,"abstract":"Abstract Well-posedness and uniform-in-time boundedness of classical solutions are investigated for a three-component parabolic system which describes the dynamics of a population of cells interacting with a chemoattractant and a nutrient. The former induces a chemotactic bias in the diffusive motion of the cells and is accounted for by a density-suppressed motility. Well-posedness is first established for generic positive and non-increasing motility functions vanishing at infinity. Growth conditions on the motility function guaranteeing the uniform-in-time boundedness of solutions are next identified. Finally, for sublinearly decaying motility functions, convergence to a spatially homogeneous steady state is shown, with an exponential rate for consumption rates behaving linearly near zero.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"47 1","pages":"1024 - 1069"},"PeriodicalIF":2.1000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption\",\"authors\":\"Jie Jiang, P. Laurençot, Yanyan Zhang\",\"doi\":\"10.1080/03605302.2021.2021422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Well-posedness and uniform-in-time boundedness of classical solutions are investigated for a three-component parabolic system which describes the dynamics of a population of cells interacting with a chemoattractant and a nutrient. The former induces a chemotactic bias in the diffusive motion of the cells and is accounted for by a density-suppressed motility. Well-posedness is first established for generic positive and non-increasing motility functions vanishing at infinity. Growth conditions on the motility function guaranteeing the uniform-in-time boundedness of solutions are next identified. Finally, for sublinearly decaying motility functions, convergence to a spatially homogeneous steady state is shown, with an exponential rate for consumption rates behaving linearly near zero.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":\"47 1\",\"pages\":\"1024 - 1069\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2021.2021422\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2021.2021422","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption
Abstract Well-posedness and uniform-in-time boundedness of classical solutions are investigated for a three-component parabolic system which describes the dynamics of a population of cells interacting with a chemoattractant and a nutrient. The former induces a chemotactic bias in the diffusive motion of the cells and is accounted for by a density-suppressed motility. Well-posedness is first established for generic positive and non-increasing motility functions vanishing at infinity. Growth conditions on the motility function guaranteeing the uniform-in-time boundedness of solutions are next identified. Finally, for sublinearly decaying motility functions, convergence to a spatially homogeneous steady state is shown, with an exponential rate for consumption rates behaving linearly near zero.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.