基于深度学习的甲襞毛细血管图像目标检测

Q2 Decision Sciences
Suma Kuncha Venkatapathiah, Sethu Selvi Selvan, P. Nanda, Manisha Shetty, Vikas Mallikarjuna Swamy, Kushagra Awasthi
{"title":"基于深度学习的甲襞毛细血管图像目标检测","authors":"Suma Kuncha Venkatapathiah, Sethu Selvi Selvan, P. Nanda, Manisha Shetty, Vikas Mallikarjuna Swamy, Kushagra Awasthi","doi":"10.11591/ijai.v12.i2.pp931-942","DOIUrl":null,"url":null,"abstract":"Microcirculation in a subject can be examined and pathological changes can be assessed by utilizing capillaroscopy, which is a very safe, convenient and non-invasive approach. Using a microscope, doctors view the capillaries by looking through nailfold epidermis. Nailfold anatomy is ideal to evaluate the microcirculation and detect various diseases caused by vascular damages. Rheumatologists evaluate systemic diseases which involve damage in vasculature, by analyzing the red blood cells within the capillaries. Sometimes, capillary morphology may be useful as an early indicator while, severity of damage in capillary architecture may indicate internal organ involvement. Thus, in a capillaroscopic assessment, the doctor examines modifications in morphological and functional aspects of capillaries. These comprise of capillary diameter, visibility, distribution, length, microhemorrhages, blood flow and density. In this paper, a novel object detection algorithm is proposed based on deep learning architectures for detecting and locating various capillary loops in the nailfold region. Various characteristic features are extracted from the capillaries through image processing algorithms and in turn an attempt is made to differentiate between images of diseased subjects and healthy controls.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep learning based object detection in nailfold capillary images\",\"authors\":\"Suma Kuncha Venkatapathiah, Sethu Selvi Selvan, P. Nanda, Manisha Shetty, Vikas Mallikarjuna Swamy, Kushagra Awasthi\",\"doi\":\"10.11591/ijai.v12.i2.pp931-942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microcirculation in a subject can be examined and pathological changes can be assessed by utilizing capillaroscopy, which is a very safe, convenient and non-invasive approach. Using a microscope, doctors view the capillaries by looking through nailfold epidermis. Nailfold anatomy is ideal to evaluate the microcirculation and detect various diseases caused by vascular damages. Rheumatologists evaluate systemic diseases which involve damage in vasculature, by analyzing the red blood cells within the capillaries. Sometimes, capillary morphology may be useful as an early indicator while, severity of damage in capillary architecture may indicate internal organ involvement. Thus, in a capillaroscopic assessment, the doctor examines modifications in morphological and functional aspects of capillaries. These comprise of capillary diameter, visibility, distribution, length, microhemorrhages, blood flow and density. In this paper, a novel object detection algorithm is proposed based on deep learning architectures for detecting and locating various capillary loops in the nailfold region. Various characteristic features are extracted from the capillaries through image processing algorithms and in turn an attempt is made to differentiate between images of diseased subjects and healthy controls.\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i2.pp931-942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i2.pp931-942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

摘要

利用毛细管镜检查可以检查受试者的微循环并评估病理变化,这是一种非常安全、方便和无创的方法。医生用显微镜通过甲襞表皮观察毛细血管。甲襞解剖是评估微循环和检测血管损伤引起的各种疾病的理想方法。风湿病学家通过分析毛细血管内的红细胞来评估涉及血管系统损伤的系统性疾病。有时,毛细血管形态可能是有用的早期指标,而毛细血管结构损伤的严重程度可能表明内部器官受累。因此,在毛细血管镜评估中,医生检查毛细血管的形态和功能方面的变化。这些包括毛细管直径、可见性、分布、长度、微出血、血流量和密度。本文提出了一种基于深度学习架构的新型目标检测算法,用于检测和定位甲襞区域的各种毛细管环。通过图像处理算法从毛细血管中提取各种特征特征,进而尝试区分患病受试者和健康对照的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning based object detection in nailfold capillary images
Microcirculation in a subject can be examined and pathological changes can be assessed by utilizing capillaroscopy, which is a very safe, convenient and non-invasive approach. Using a microscope, doctors view the capillaries by looking through nailfold epidermis. Nailfold anatomy is ideal to evaluate the microcirculation and detect various diseases caused by vascular damages. Rheumatologists evaluate systemic diseases which involve damage in vasculature, by analyzing the red blood cells within the capillaries. Sometimes, capillary morphology may be useful as an early indicator while, severity of damage in capillary architecture may indicate internal organ involvement. Thus, in a capillaroscopic assessment, the doctor examines modifications in morphological and functional aspects of capillaries. These comprise of capillary diameter, visibility, distribution, length, microhemorrhages, blood flow and density. In this paper, a novel object detection algorithm is proposed based on deep learning architectures for detecting and locating various capillary loops in the nailfold region. Various characteristic features are extracted from the capillaries through image processing algorithms and in turn an attempt is made to differentiate between images of diseased subjects and healthy controls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信